期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
组合动作空间深度强化学习的人群疏散引导方法
被引量:
5
1
作者
薛怡然
吴锐
刘家锋
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
2021年第8期29-38,共10页
人群疏散引导系统可在建筑物内发生灾害时有效保护生命安全,减少人员财产损失。针对现有人群疏散引导系统需要人工设计模型和输入参数,工作量大且容易造成误差的问题,本文提出了基于深度强化学习的端到端智能疏散引导方法,设计了基于社...
人群疏散引导系统可在建筑物内发生灾害时有效保护生命安全,减少人员财产损失。针对现有人群疏散引导系统需要人工设计模型和输入参数,工作量大且容易造成误差的问题,本文提出了基于深度强化学习的端到端智能疏散引导方法,设计了基于社会力模型的强化学习智能体仿真交互环境。使智能体可以仅以场景图像为输入,通过与仿真环境的交互和试错自主学习场景模型,探索路径规划策略,直接输出动态引导标志信息,指引人群有效疏散。针对强化学习深度Q网络(DQN)算法在人群疏散问题中因为动作空间维度较高,导致神经网络复杂度指数增长的“维度灾难”现象,本文提出了将Q网络输出层按动作维度分组的组合动作空间DQN算法,显著降低了网络结构复杂度,提高了系统在多个引导标志复杂场景中的实用性。在不同场景的仿真实验表明本文方法在逃生时间指标上优于静态引导方法,达到人工构造模型方法的相同水平。说明本文方法可以有效引导人群,提高疏散效率,同时降低人工构造模型的工作量并减小人为误差。
展开更多
关键词
神经网络
强化学习
疏散引导
人群仿真
深度Q网络
在线阅读
下载PDF
职称材料
题名
组合动作空间深度强化学习的人群疏散引导方法
被引量:
5
1
作者
薛怡然
吴锐
刘家锋
机构
模式识别
与智能
系统
研究
中心
(
哈尔滨工业大学
)
出处
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
2021年第8期29-38,共10页
基金
国家自然科学基金(61672190)。
文摘
人群疏散引导系统可在建筑物内发生灾害时有效保护生命安全,减少人员财产损失。针对现有人群疏散引导系统需要人工设计模型和输入参数,工作量大且容易造成误差的问题,本文提出了基于深度强化学习的端到端智能疏散引导方法,设计了基于社会力模型的强化学习智能体仿真交互环境。使智能体可以仅以场景图像为输入,通过与仿真环境的交互和试错自主学习场景模型,探索路径规划策略,直接输出动态引导标志信息,指引人群有效疏散。针对强化学习深度Q网络(DQN)算法在人群疏散问题中因为动作空间维度较高,导致神经网络复杂度指数增长的“维度灾难”现象,本文提出了将Q网络输出层按动作维度分组的组合动作空间DQN算法,显著降低了网络结构复杂度,提高了系统在多个引导标志复杂场景中的实用性。在不同场景的仿真实验表明本文方法在逃生时间指标上优于静态引导方法,达到人工构造模型方法的相同水平。说明本文方法可以有效引导人群,提高疏散效率,同时降低人工构造模型的工作量并减小人为误差。
关键词
神经网络
强化学习
疏散引导
人群仿真
深度Q网络
Keywords
neural network
reinforcement learning
evacuation guidance
crowd simulation
deep Q network(DQN)
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
组合动作空间深度强化学习的人群疏散引导方法
薛怡然
吴锐
刘家锋
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
2021
5
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部