为了精准获取河南省冬小麦空间分布及面积数据,基于2003—2021年250 m MODIS-NDVI时间序列遥感数据集,通过设置不同的阈值条件获得高质量的样本数据,采用深度神经网络(DNN)、随机森林(RF)和支持向量机(SVM)算法,自动从NDVI时序数据中提...为了精准获取河南省冬小麦空间分布及面积数据,基于2003—2021年250 m MODIS-NDVI时间序列遥感数据集,通过设置不同的阈值条件获得高质量的样本数据,采用深度神经网络(DNN)、随机森林(RF)和支持向量机(SVM)算法,自动从NDVI时序数据中提取冬小麦特征,分别训练出非线性模型,在250 m尺度对河南省冬小麦分布和面积进行识别。结果表明,基于DNN算法的河南省冬小麦面积识别模型精确率为97.26%,总体一致性为97.97%;基于RF、SVM算法的精确率分别为91.51%和89.31%,总体一致性均在90%以下。和RF、SVM算法相比,DNN算法在精度上有明显的提升,能够更好地反映河南省冬小麦的时间变化趋势和空间面积分布。该研究说明,运用中等分辨率长时间序列影像结合DNN算法,在一定程度上可以更准确识别大区域的农作物信息。展开更多
在复杂的低照度环境中获取的图像存在亮度低、噪声多和细节信息丢失等问题,直接使用通用的目标检测方法无法达到较为理想的效果.为此,提出低照度目标检测方法——Dark-YOLO.首先,使用CSPDarkNet-53骨干网络提取低照度图像特征,并提出路...在复杂的低照度环境中获取的图像存在亮度低、噪声多和细节信息丢失等问题,直接使用通用的目标检测方法无法达到较为理想的效果.为此,提出低照度目标检测方法——Dark-YOLO.首先,使用CSPDarkNet-53骨干网络提取低照度图像特征,并提出路径聚合增强模块以进一步增强特征表征能力;然后,设计金字塔平衡注意力模块捕获多尺度特征并加以有效利用,生成包含不同尺度且更具判别力的特征;最后,使用预测交并比(intersection over union,IoU)改进检测头,IoU预测分支为每个预测框预测IoU值,使得目标定位更加准确.在ExDark数据集上的实验结果表明,相较于YOLOv4,均值平均精度(mAP)提升了4.10%,Dark-YOLO方法能够有效地提高在低照度场景下目标检测的性能.展开更多
文摘由于低照度图像具有对比度低、细节丢失严重、噪声大等缺点,现有的目标检测算法对低照度图像的检测效果不理想.为此,本文提出一种结合空间感知注意力机制和多尺度特征融合(Spatial-aware Attention Mechanism and Multi-Scale Feature Fusion,SAM-MSFF)的低照度目标检测方法 .该方法首先通过多尺度交互内存金字塔融合多尺度特征,增强低照度图像特征中的有效信息,并设置内存向量存储样本的特征,捕获样本之间的潜在关联性;然后,引入空间感知注意力机制获取特征在空间域的长距离上下文信息和局部信息,从而增强低照度图像中的目标特征,抑制背景信息和噪声的干扰;最后,利用多感受野增强模块扩张特征的感受野,对具有不同感受野的特征进行分组重加权计算,使检测网络根据输入的多尺度信息自适应地调整感受野的大小.在ExDark数据集上进行实验,本文方法的平均精度(mean Average Precision,mAP)达到77.04%,比现有的主流目标检测方法提高2.6%~14.34%.
文摘为了精准获取河南省冬小麦空间分布及面积数据,基于2003—2021年250 m MODIS-NDVI时间序列遥感数据集,通过设置不同的阈值条件获得高质量的样本数据,采用深度神经网络(DNN)、随机森林(RF)和支持向量机(SVM)算法,自动从NDVI时序数据中提取冬小麦特征,分别训练出非线性模型,在250 m尺度对河南省冬小麦分布和面积进行识别。结果表明,基于DNN算法的河南省冬小麦面积识别模型精确率为97.26%,总体一致性为97.97%;基于RF、SVM算法的精确率分别为91.51%和89.31%,总体一致性均在90%以下。和RF、SVM算法相比,DNN算法在精度上有明显的提升,能够更好地反映河南省冬小麦的时间变化趋势和空间面积分布。该研究说明,运用中等分辨率长时间序列影像结合DNN算法,在一定程度上可以更准确识别大区域的农作物信息。
文摘在复杂的低照度环境中获取的图像存在亮度低、噪声多和细节信息丢失等问题,直接使用通用的目标检测方法无法达到较为理想的效果.为此,提出低照度目标检测方法——Dark-YOLO.首先,使用CSPDarkNet-53骨干网络提取低照度图像特征,并提出路径聚合增强模块以进一步增强特征表征能力;然后,设计金字塔平衡注意力模块捕获多尺度特征并加以有效利用,生成包含不同尺度且更具判别力的特征;最后,使用预测交并比(intersection over union,IoU)改进检测头,IoU预测分支为每个预测框预测IoU值,使得目标定位更加准确.在ExDark数据集上的实验结果表明,相较于YOLOv4,均值平均精度(mAP)提升了4.10%,Dark-YOLO方法能够有效地提高在低照度场景下目标检测的性能.