The PICOSEC Micromegas(MM)is a precise timing gaseous detector based on a Cherenkov radiator coupled with a semi-transparent photocathode and an MM amplifying structure.It features a two-stage amplification process th...The PICOSEC Micromegas(MM)is a precise timing gaseous detector based on a Cherenkov radiator coupled with a semi-transparent photocathode and an MM amplifying structure.It features a two-stage amplification process that leads to a significant deterioration of non-uniformity when scaling up to larger areas.Since the performance of gaseous detectors is highly dependent on the choice of working gas,optimizing the gas mixture offers a promising solution to improve the uniformity performance.This paper addresses these challenges through a combined approach of simulation based on Garfield++and experimental studies.The simulation investigates the properties of different mixing fractions of gas mixtures and their impact on detector performance,including gain uniformity and time resolution.To verify the simulation results,experimental tests were conducted using a multi-channel PICOSEC MM prototype with different gas mixtures.The experimental results are consistent with the findings of the simulation,indicating that a higher concentration of neon significantly improves the detector’s gain uniformity.Furthermore,the influence of gas mixtures on time resolution was explored as a critical performance indicator.The study presented in this paper offers valuable insights for improving uniformity in large-area PICOSEC MM detectors and optimizing overall performance.展开更多
The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled h...The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled hyperonantihyperon pairs to be produced at Super Tau-Charm Facility(STCF),the CP asymmetry of hyperon is expected to be tested with a statistical sensitivity of 10^(−4) or even better.To cope with the statistical precision,the systematic effects from various aspects are critical and need to be studied in detail.In this paper,the sensitivity effects on the CP violation parameters associated with the detector resolution,including those of the position and momentum,are studied and discussed in detail.The results provide valuable guidance for the design of STCF detector.展开更多
基金supported by the National Natural Science Foundation of China(12125505).
文摘The PICOSEC Micromegas(MM)is a precise timing gaseous detector based on a Cherenkov radiator coupled with a semi-transparent photocathode and an MM amplifying structure.It features a two-stage amplification process that leads to a significant deterioration of non-uniformity when scaling up to larger areas.Since the performance of gaseous detectors is highly dependent on the choice of working gas,optimizing the gas mixture offers a promising solution to improve the uniformity performance.This paper addresses these challenges through a combined approach of simulation based on Garfield++and experimental studies.The simulation investigates the properties of different mixing fractions of gas mixtures and their impact on detector performance,including gain uniformity and time resolution.To verify the simulation results,experimental tests were conducted using a multi-channel PICOSEC MM prototype with different gas mixtures.The experimental results are consistent with the findings of the simulation,indicating that a higher concentration of neon significantly improves the detector’s gain uniformity.Furthermore,the influence of gas mixtures on time resolution was explored as a critical performance indicator.The study presented in this paper offers valuable insights for improving uniformity in large-area PICOSEC MM detectors and optimizing overall performance.
基金supported by the National Key R&D Program of China(2022YFA1602200)the International Partnership Program of the Chinese Academy of Sciences(211134KYSB20200057).
文摘The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled hyperonantihyperon pairs to be produced at Super Tau-Charm Facility(STCF),the CP asymmetry of hyperon is expected to be tested with a statistical sensitivity of 10^(−4) or even better.To cope with the statistical precision,the systematic effects from various aspects are critical and need to be studied in detail.In this paper,the sensitivity effects on the CP violation parameters associated with the detector resolution,including those of the position and momentum,are studied and discussed in detail.The results provide valuable guidance for the design of STCF detector.