期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于KNN-LASSO-PPC法的改进BitCN-LSTM短期光伏功率预测
1
作者
贺宇轩
王锟
+2 位作者
曾进辉
刘颉
周武定
《电子测量技术》
北大核心
2025年第15期42-51,共10页
针对光伏出力受天气条件随机性和波动性影响的特点,提出一种基于KNN-LASSO-PCC法的改进BitCN-LSTM神经网络短期光伏功率预测方法。首先,采用KNN对数据集进行清洗,再结合LASSO与PCC进行多层特征筛选;然后,在传统BitCN-LSTM方法基础上加入...
针对光伏出力受天气条件随机性和波动性影响的特点,提出一种基于KNN-LASSO-PCC法的改进BitCN-LSTM神经网络短期光伏功率预测方法。首先,采用KNN对数据集进行清洗,再结合LASSO与PCC进行多层特征筛选;然后,在传统BitCN-LSTM方法基础上加入GRU与Elman神经网络,其中,GRU解决长时间依赖问题和参数优化问题,Elman网络增强局部时序建模和记忆能力;最后,在多层特征筛选下选取直角辐射、散角辐射、气温和湿度作为输入变量,选取光伏电站各时段发电功率的预测值作为最终输出,进行为期1~3天间隔15 min进行一次预测的仿真,所得的最优评估指标平均绝对误差、均方误差以及平均绝对百分比误差分别为9.9763%、1.7029%和10.6267%,训练时间和最优测试时间分别为181.3051 s和0.058932 s,相较于其他常见的短期光伏预测模型精度更高,速度更快。
展开更多
关键词
光伏功率预测
多层特征筛选
K近邻算法
埃尔曼网络
门控循环单元
在线阅读
下载PDF
职称材料
题名
基于KNN-LASSO-PPC法的改进BitCN-LSTM短期光伏功率预测
1
作者
贺宇轩
王锟
曾进辉
刘颉
周武定
机构
湖南工业大学电气与信息工程学院
株洲高新电业集团有限公司新动力分公司
出处
《电子测量技术》
北大核心
2025年第15期42-51,共10页
基金
国家自然科学基金(52377185)项目资助。
文摘
针对光伏出力受天气条件随机性和波动性影响的特点,提出一种基于KNN-LASSO-PCC法的改进BitCN-LSTM神经网络短期光伏功率预测方法。首先,采用KNN对数据集进行清洗,再结合LASSO与PCC进行多层特征筛选;然后,在传统BitCN-LSTM方法基础上加入GRU与Elman神经网络,其中,GRU解决长时间依赖问题和参数优化问题,Elman网络增强局部时序建模和记忆能力;最后,在多层特征筛选下选取直角辐射、散角辐射、气温和湿度作为输入变量,选取光伏电站各时段发电功率的预测值作为最终输出,进行为期1~3天间隔15 min进行一次预测的仿真,所得的最优评估指标平均绝对误差、均方误差以及平均绝对百分比误差分别为9.9763%、1.7029%和10.6267%,训练时间和最优测试时间分别为181.3051 s和0.058932 s,相较于其他常见的短期光伏预测模型精度更高,速度更快。
关键词
光伏功率预测
多层特征筛选
K近邻算法
埃尔曼网络
门控循环单元
Keywords
photovoltaic power prediction
multi-layer feature selection
K-nearest neighbor algorithm
Elman network
gated recurrent unit
分类号
TP271 [自动化与计算机技术—检测技术与自动化装置]
TN06 [电子电信—物理电子学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于KNN-LASSO-PPC法的改进BitCN-LSTM短期光伏功率预测
贺宇轩
王锟
曾进辉
刘颉
周武定
《电子测量技术》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部