碳化硅SiC(silicon carbide)功率器件因其卓越的材料性能,表现出巨大的应用前景,其中金属-氧化物-场效应晶体管MOSFET(metal oxide semiconductor field effect transistor)是最重要的器件。3300 V SiC MOSFET可应用于轨道交通和智能电...碳化硅SiC(silicon carbide)功率器件因其卓越的材料性能,表现出巨大的应用前景,其中金属-氧化物-场效应晶体管MOSFET(metal oxide semiconductor field effect transistor)是最重要的器件。3300 V SiC MOSFET可应用于轨道交通和智能电网等大功率领域,能显著提高效率,降低装置体积。在这些应用领域中,对功率器件的可靠性要求很高,为此,针对自主研制的3300 V SiC MOSFET开展栅氧可靠性研究。首先,按照常规的评估技术对其进行了高温栅偏HTGB(high temperature gate bias)试验;其次,针对高压SiC MOSFET的特点进行了漏源反偏时栅氧电热应力的研究。试验结果表明,在高压SiC MOSFET中,漏源反偏时栅氧的电热应力较大,在设计及使用时应尤为注意。展开更多
衬底减薄可以大幅提升SiC结势垒肖特基(JBS)二极管的电流密度,但减薄工艺和减薄引入的激光退火工艺仍面临巨大挑战。使用不同型号的金刚砂轮模拟了SiC衬底减薄精磨过程,研究了精磨后SiC衬底的界面质量;同时,使用波长为355 nm的紫外激光...衬底减薄可以大幅提升SiC结势垒肖特基(JBS)二极管的电流密度,但减薄工艺和减薄引入的激光退火工艺仍面临巨大挑战。使用不同型号的金刚砂轮模拟了SiC衬底减薄精磨过程,研究了精磨后SiC衬底的界面质量;同时,使用波长为355 nm的紫外激光器退火Ni/4H-SiC结构,分析了激光能量密度对欧姆接触的性能影响;最后,结合减薄工艺和激光退火工艺制备了厚度为100μm的1 200 V/15 A SiC JBS二极管。结果表明,使用超精细砂轮精磨SiC衬底后,其表面粗糙度为1.26 nm,纵向损伤层厚度约为60 nm;当激光能量密度为1.8 J/cm^(2)时,能形成良好的欧姆接触,比接触电阻率为7.42×10^(-5)Ω·cm^(2);厚度减薄至100μm的1 200 V/15 A SiC JBS二极管在不损失阻断性能的情况下,其正向导通压降比未减薄的减小了0.15 V,电流密度提升了41.27%。展开更多
文摘碳化硅SiC(silicon carbide)功率器件因其卓越的材料性能,表现出巨大的应用前景,其中金属-氧化物-场效应晶体管MOSFET(metal oxide semiconductor field effect transistor)是最重要的器件。3300 V SiC MOSFET可应用于轨道交通和智能电网等大功率领域,能显著提高效率,降低装置体积。在这些应用领域中,对功率器件的可靠性要求很高,为此,针对自主研制的3300 V SiC MOSFET开展栅氧可靠性研究。首先,按照常规的评估技术对其进行了高温栅偏HTGB(high temperature gate bias)试验;其次,针对高压SiC MOSFET的特点进行了漏源反偏时栅氧电热应力的研究。试验结果表明,在高压SiC MOSFET中,漏源反偏时栅氧的电热应力较大,在设计及使用时应尤为注意。
文摘衬底减薄可以大幅提升SiC结势垒肖特基(JBS)二极管的电流密度,但减薄工艺和减薄引入的激光退火工艺仍面临巨大挑战。使用不同型号的金刚砂轮模拟了SiC衬底减薄精磨过程,研究了精磨后SiC衬底的界面质量;同时,使用波长为355 nm的紫外激光器退火Ni/4H-SiC结构,分析了激光能量密度对欧姆接触的性能影响;最后,结合减薄工艺和激光退火工艺制备了厚度为100μm的1 200 V/15 A SiC JBS二极管。结果表明,使用超精细砂轮精磨SiC衬底后,其表面粗糙度为1.26 nm,纵向损伤层厚度约为60 nm;当激光能量密度为1.8 J/cm^(2)时,能形成良好的欧姆接触,比接触电阻率为7.42×10^(-5)Ω·cm^(2);厚度减薄至100μm的1 200 V/15 A SiC JBS二极管在不损失阻断性能的情况下,其正向导通压降比未减薄的减小了0.15 V,电流密度提升了41.27%。