针对现有森林资源调查中立木胸径测量工作劳动强度大、效率低,先进设备操作复杂、成本高等问题,结合相机标定、三维重建、机器视觉和近景摄影测量等技术,探索基于智能手机与机器视觉技术的立木胸径测量方法。通过智能手机获取待测立木...针对现有森林资源调查中立木胸径测量工作劳动强度大、效率低,先进设备操作复杂、成本高等问题,结合相机标定、三维重建、机器视觉和近景摄影测量等技术,探索基于智能手机与机器视觉技术的立木胸径测量方法。通过智能手机获取待测立木的图像信息,运用Lab颜色空间模型(Lab color model)和3×3算子对图像进行卷积运算,得到立木图像的视觉显著图;结合HSV颜色模型(色调H,饱和度S,明度V)中的H分量增强图像中立木树干部分的颜色对比度,通过图像分割算法识别并获取自然环境下的目标立木轮廓区域;通过一种改进的带有非线性畸变项的相机标定模型标定智能手机的相机内、外参数,并借助相机参数和二维图像信息进行三维世界坐标重建,从而实现树干1.3 m处胸径的测量。经验证,一定距离内胸径测量结果的相对误差小于2.50%。该方法测量精度较高,符合森林资源调查对胸径测量的精度要求,可应用于森林资源调查。展开更多
针对图像描述算法缺乏在农业领域中的应用,传统模型参数庞大的问题,该研究提出一种基于ResNet18特征编码器的图像描述算法,对作物患病类型进行识别并生成描述。首先,建立水稻病虫害图像描述数据集。其次,使用浅层ResNet18作为编码器,在...针对图像描述算法缺乏在农业领域中的应用,传统模型参数庞大的问题,该研究提出一种基于ResNet18特征编码器的图像描述算法,对作物患病类型进行识别并生成描述。首先,建立水稻病虫害图像描述数据集。其次,使用浅层ResNet18作为编码器,在保证特征提取能力的同时缩减网络模型大小,解码器使用融合了注意力机制的长短期记忆网络(Long Short Term Memory,LSTM)来生成图像描述。试验结果表明,改进后模型尺寸大小为原来的1/3,经过6000次迭代后模型基本收敛,准确率达到98.48%。在水稻病虫害图像描述数据集上,改进编码器-解码器结构后的双语评估替换值(Bilingual Evaluation Understudy,BLEU)和METEOR(Metric for Evaluation of Translation with Explicit ORdering)分别达到0.752和0.404,其余指标结果也明显优于其他模型,具有描述细致准确、鲁棒性强等优点,能够更好地适用于小规模数据集上的训练,可为农作物相似病害特征的自动化描述提供有益参考。展开更多
文摘针对现有森林资源调查中立木胸径测量工作劳动强度大、效率低,先进设备操作复杂、成本高等问题,结合相机标定、三维重建、机器视觉和近景摄影测量等技术,探索基于智能手机与机器视觉技术的立木胸径测量方法。通过智能手机获取待测立木的图像信息,运用Lab颜色空间模型(Lab color model)和3×3算子对图像进行卷积运算,得到立木图像的视觉显著图;结合HSV颜色模型(色调H,饱和度S,明度V)中的H分量增强图像中立木树干部分的颜色对比度,通过图像分割算法识别并获取自然环境下的目标立木轮廓区域;通过一种改进的带有非线性畸变项的相机标定模型标定智能手机的相机内、外参数,并借助相机参数和二维图像信息进行三维世界坐标重建,从而实现树干1.3 m处胸径的测量。经验证,一定距离内胸径测量结果的相对误差小于2.50%。该方法测量精度较高,符合森林资源调查对胸径测量的精度要求,可应用于森林资源调查。
文摘针对图像描述算法缺乏在农业领域中的应用,传统模型参数庞大的问题,该研究提出一种基于ResNet18特征编码器的图像描述算法,对作物患病类型进行识别并生成描述。首先,建立水稻病虫害图像描述数据集。其次,使用浅层ResNet18作为编码器,在保证特征提取能力的同时缩减网络模型大小,解码器使用融合了注意力机制的长短期记忆网络(Long Short Term Memory,LSTM)来生成图像描述。试验结果表明,改进后模型尺寸大小为原来的1/3,经过6000次迭代后模型基本收敛,准确率达到98.48%。在水稻病虫害图像描述数据集上,改进编码器-解码器结构后的双语评估替换值(Bilingual Evaluation Understudy,BLEU)和METEOR(Metric for Evaluation of Translation with Explicit ORdering)分别达到0.752和0.404,其余指标结果也明显优于其他模型,具有描述细致准确、鲁棒性强等优点,能够更好地适用于小规模数据集上的训练,可为农作物相似病害特征的自动化描述提供有益参考。