期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
不平衡数据集下的数据中心网络流量异常检测
1
作者 王光明 李冬青 蒋从锋 《计算机工程》 北大核心 2025年第8期227-237,共11页
数据中心作为信息化时代的重要基础设施,承载着各类关键信息服务。目前,数据中心是网络攻击的主要攻击目标。为了提高网络安全,提出数据中心网络流量异常检测方法。研究内容包括特征选择、不平衡数据集分类和异常流量检测。首先,提出了... 数据中心作为信息化时代的重要基础设施,承载着各类关键信息服务。目前,数据中心是网络攻击的主要攻击目标。为了提高网络安全,提出数据中心网络流量异常检测方法。研究内容包括特征选择、不平衡数据集分类和异常流量检测。首先,提出了一种处理不平衡数据集的分类方法,通过基于集成的特征选择和混合采样算法提高分类性能;其次,引入基于随机森林(RF)和LightGBM的流量异常检测方法,充分利用它们在处理不平衡数据和噪声抵抗方面的优势。在CSE-CIC-IDS2018公开数据集上进行验证,实验结果表明,所提方法具有较高的精确率和召回率,在15种流量类型中有9种类型的分类精确率都高于90%,并且有13种类型的分类精确率都在74%以上,对提高数据中心安全、保障服务质量和改善网络流量异常检测具有重要意义。 展开更多
关键词 数据中心 网络流量 异常检测 不平衡数据集 集成学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部