期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于二阶对抗样本的对抗训练防御 被引量:7
1
作者 钱亚冠 张锡敏 +3 位作者 王滨 顾钊铨 李蔚 云本胜 《电子与信息学报》 EI CSCD 北大核心 2021年第11期3367-3373,共7页
深度神经网络(DNN)应用于图像识别具有很高的准确率,但容易遭到对抗样本的攻击。对抗训练是目前抵御对抗样本攻击的有效方法之一。生成更强大的对抗样本可以更好地解决对抗训练的内部最大化问题,是提高对抗训练有效性的关键。该文针对... 深度神经网络(DNN)应用于图像识别具有很高的准确率,但容易遭到对抗样本的攻击。对抗训练是目前抵御对抗样本攻击的有效方法之一。生成更强大的对抗样本可以更好地解决对抗训练的内部最大化问题,是提高对抗训练有效性的关键。该文针对内部最大化问题,提出一种基于2阶对抗样本的对抗训练,在输入邻域内进行2次多项式逼近,生成更强的对抗样本,从理论上分析了2阶对抗样本的强度优于1阶对抗样本。在MNIST和CIFAR10数据集上的实验表明,2阶对抗样本具有更高的攻击成功率和隐蔽性。与PGD对抗训练相比,2阶对抗训练防御对当前典型的对抗样本均具有鲁棒性。 展开更多
关键词 对抗样本 对抗训练 2阶泰勒展开
在线阅读 下载PDF
面向边缘智能的两阶段对抗知识迁移方法 被引量:5
2
作者 钱亚冠 马骏 +4 位作者 何念念 王滨 顾钊铨 凌祥 Wassim Swaileh 《软件学报》 EI CSCD 北大核心 2022年第12期4504-4516,共13页
对抗样本的出现,对深度学习的鲁棒性提出了挑战.随着边缘智能的兴起,如何在计算资源有限的边缘设备上部署鲁棒的精简深度学习模型,是一个有待解决的问题.由于精简模型无法通过常规的对抗训练获得良好的鲁棒性,提出两阶段对抗知识迁移的... 对抗样本的出现,对深度学习的鲁棒性提出了挑战.随着边缘智能的兴起,如何在计算资源有限的边缘设备上部署鲁棒的精简深度学习模型,是一个有待解决的问题.由于精简模型无法通过常规的对抗训练获得良好的鲁棒性,提出两阶段对抗知识迁移的方法,先将对抗知识从数据向模型迁移,然后将复杂模型获得的对抗知识向精简模型迁移.对抗知识以对抗样本的数据形式蕴含,或以模型决策边界的形式蕴含.具体而言,利用云平台上的GPU集群对复杂模型进行对抗训练,实现对抗知识从数据向模型迁移;利用改进的蒸馏技术将对抗知识进一步从复杂模型向精简模型的迁移,最后提升边缘设备上精简模型的鲁棒性.在MNIST,CIFAR-10和CIFAR-100这3个数据集上进行验证,实验结果表明:提出的这种两阶段对抗知识迁移方法可以有效地提升精简模型的性能和鲁棒性,同时加快训练过程的收敛性. 展开更多
关键词 对抗样本 对抗训练 知识迁移 知识蒸馏
在线阅读 下载PDF
面向人脸识别的口罩区域修复算法 被引量:4
3
作者 李悦 钱亚冠 +3 位作者 关晓惠 李蔚 王滨 顾钊铨 《电信科学》 2021年第8期66-76,共11页
遮挡下的人脸识别一直是现实场景中的一个难题。特别是新冠肺炎疫情爆发后,在机场、车站等需要鉴别入场人员身份信息的场所,口罩遮挡使得可供识别的面部特征大幅减少,原有的人脸识别算法准确率随之下降。对去除口罩遮挡进行了研究,提出... 遮挡下的人脸识别一直是现实场景中的一个难题。特别是新冠肺炎疫情爆发后,在机场、车站等需要鉴别入场人员身份信息的场所,口罩遮挡使得可供识别的面部特征大幅减少,原有的人脸识别算法准确率随之下降。对去除口罩遮挡进行了研究,提出了一个新的框架修复人脸,利用边缘生成网络还原遮挡区域的边缘,在此基础上再利用区域填充网络恢复被遮挡的人脸,同时保留身份信息。为提升模型的性能,提出空间加权对抗损失和身份一致性损失训练上述网络,并利用关键点信息,构建了两个戴口罩的人脸数据集。实验结果表明,恢复被口罩遮挡的人脸的图像使人脸识别算法ArcFace的准确率达到98.39%,比直接采用ArcFace识别遮挡人脸提升了4.13%的准确率。 展开更多
关键词 口罩遮挡 人脸识别 边缘生成网络 区域填充网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部