期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于LWKConv-DRSN-FPN的旋转机械故障诊断 被引量:3
1
作者 伍兴 李志伟 +1 位作者 宁文乐 郑照 《噪声与振动控制》 CSCD 北大核心 2024年第5期133-139,共7页
针对传统旋转机械故障诊断方法难以应对强噪声干扰以及诊断准确率较低的问题,提出一种Laplace小波核卷积层(Laplace Wavelet Kernel Convolutional Layer,LWKConv)、深度残差收缩网络(Deep Residual Shrinkage Networks,DRSN)和特征金... 针对传统旋转机械故障诊断方法难以应对强噪声干扰以及诊断准确率较低的问题,提出一种Laplace小波核卷积层(Laplace Wavelet Kernel Convolutional Layer,LWKConv)、深度残差收缩网络(Deep Residual Shrinkage Networks,DRSN)和特征金字塔网络(Feature Pyramid Networks,FPN)相结合的故障诊断方法。具体地,在DRSN模型结构基础上,构造LWKConv,通过更新尺度因子和平移因子,多尺度提取故障引起的突变冲击特征;引入FPN融合深层和浅层特征,提高模型对浅层细节信息的利用程度,实现对旋转机械的故障诊断。研究表明:所提的LWKConv-DRSN-FPN方法基于轴承和齿轮数据集的诊断准确率最高能达到100%,尤其在-4 dB强噪声干扰条件下的诊断准确率达到97.75%,能有效提取突变冲击特征,具有较好的通用性和抗强噪声干扰能力。 展开更多
关键词 故障诊断 旋转机械 Laplace小波核卷积层 深度残差收缩网络 特征金字塔网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部