在传统的二值逻辑中,存在三种构成完备集的对称函数;基本对称函数S_i、简单对称函数τ_i以及RM型基本对称函数R_i.任意对称函数均可作如下展开:f(x_1,…,x_n)= sum from j=0 to∞(A_j·S_j)(1)f(x_1,…,x_n)= (?)(B_j·τ_j)(...在传统的二值逻辑中,存在三种构成完备集的对称函数;基本对称函数S_i、简单对称函数τ_i以及RM型基本对称函数R_i.任意对称函数均可作如下展开:f(x_1,…,x_n)= sum from j=0 to∞(A_j·S_j)(1)f(x_1,…,x_n)= (?)(B_j·τ_j)(2)f(X_1,…,X_)=(?)C_j·R_j(3)上述诸式中∑表示或运算,(?)表示异或运算,·表示与运算.根据S_i,τ_i与R_i的定义以及异或运算的性质可以得到各展开系数之间的转换关系:展开更多
文摘在传统的二值逻辑中,存在三种构成完备集的对称函数;基本对称函数S_i、简单对称函数τ_i以及RM型基本对称函数R_i.任意对称函数均可作如下展开:f(x_1,…,x_n)= sum from j=0 to∞(A_j·S_j)(1)f(x_1,…,x_n)= (?)(B_j·τ_j)(2)f(X_1,…,X_)=(?)C_j·R_j(3)上述诸式中∑表示或运算,(?)表示异或运算,·表示与运算.根据S_i,τ_i与R_i的定义以及异或运算的性质可以得到各展开系数之间的转换关系: