期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
多模态医疗数据中海量小文件存储优化方法 被引量:9
1
作者 曾梦 邹北骥 +2 位作者 张文生 杨雪冰 朱承璋 《软件学报》 EI CSCD 北大核心 2023年第3期1451-1469,共19页
Hadoop分布式文件系统(HDFS)通常用于大文件的存储和管理,当进行海量小文件的存储和计算时,会消耗大量的NameNode内存和访问时间,成为制约HDFS性能的一个重要因素.针对多模态医疗数据中海量小文件问题,提出一种基于双层哈希编码和HBase... Hadoop分布式文件系统(HDFS)通常用于大文件的存储和管理,当进行海量小文件的存储和计算时,会消耗大量的NameNode内存和访问时间,成为制约HDFS性能的一个重要因素.针对多模态医疗数据中海量小文件问题,提出一种基于双层哈希编码和HBase的海量小文件存储优化方法.在小文件合并时,使用可扩展哈希函数构建索引文件存储桶,使索引文件可以根据需要进行动态扩展,实现文件追加功能.在每个存储桶中,使用MWHC哈希函数存储每个文件索引信息在索引文件中的位置,当访问文件时,无须读取所有文件的索引信息,只需读取相应存储桶中的索引信息即可,从而能够在O(1)的时间复杂度内读取文件,提高文件查找效率.为了满足多模态医疗数据的存储需求,使用HBase存储文件索引信息,并设置标识列用于标识不同模态的医疗数据,便于对不同模态数据的存储管理,并提高文件的读取速度.为了进一步优化存储性能,建立了基于LRU的元数据预取机制,并采用LZ4压缩算法对合并文件进行压缩存储.通过对比文件存取性能、NameNode内存使用率,实验结果表明,所提出的算法与原始HDFS、HAR、MapFile、TypeStorage以及HPF小文件合并方法相比,文件读取时间更短,能够提高HDFS在处理多模态医疗数据中海量小文件时的整体性能. 展开更多
关键词 多模态医疗数据 HDFS HBASE 小文件 存储性能优化
在线阅读 下载PDF
面向自然场景图像的三阶段文字识别框架 被引量:7
2
作者 邹北骥 杨文君 +1 位作者 刘姝 姜灵子 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2021年第1期1-8,共8页
文字识别技术在文档管理、图像理解、视觉导航等中具有重要应用。然而,自然场景中的文字通常排列任意、形状不一、字体多样,难以被检测和识别。提出了面向自然场景图像的三阶段文字识别框架,该框架包括文字检测、文字矫正和文字识别。首... 文字识别技术在文档管理、图像理解、视觉导航等中具有重要应用。然而,自然场景中的文字通常排列任意、形状不一、字体多样,难以被检测和识别。提出了面向自然场景图像的三阶段文字识别框架,该框架包括文字检测、文字矫正和文字识别。首先,利用特征金字塔网络分割图像中的字符,基于双向长短期记忆网络获取字符间的亲和度,连接孤立字符构建单词行,文字检测率(F分数)高达91.97%。然后,通过多目标矫正网络矫正被检测文字,以应对场景图像文字的复杂形变,增强阅读性。最后,通过注意力序列识别网络按序输出预测结果,实现单词级识别,文字识别正确率达84.98%。 展开更多
关键词 文字识别 自然场景 文字检测 文字矫正
在线阅读 下载PDF
自然场景车标数据集的构建及其应用 被引量:2
3
作者 邹北骥 雷太航 +2 位作者 刘姝 廖望旻 姜灵子 《国防科技大学学报》 EI CAS CSCD 北大核心 2021年第1期95-102,共8页
车标作为车辆身份的关键特征之一,在车辆的监控与辨识中发挥着重要作用。由于自然场景复杂多变,对其中的车标进行准确识别仍具有很大的挑战性。目前公开数据库很少且存在诸多局限,导致研究缺乏可信度和实用性。本文建立了一个面向自然... 车标作为车辆身份的关键特征之一,在车辆的监控与辨识中发挥着重要作用。由于自然场景复杂多变,对其中的车标进行准确识别仍具有很大的挑战性。目前公开数据库很少且存在诸多局限,导致研究缺乏可信度和实用性。本文建立了一个面向自然场景的全新数据集,包含多种采集环境下的10324幅、67类车辆图像。基于此数据集开展应用研究,提出一个目标检测与深度学习相结合的车标识别方法,包括车标区域定位和车标种类预测两大步骤。实验表明,该方法对复杂背景有较强的适应性,在涉及30种车标的分类任务中达到89.0%的总体识别率。 展开更多
关键词 车标识别 自然场景 目标检测 深度学习
在线阅读 下载PDF
一种基于改进U形网络的眼底图像视网膜新生血管检测方法 被引量:1
4
作者 邹北骥 易博松 刘晴 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第4期19-25,共7页
糖尿病性视网膜病变(简称糖网病)是主要的致盲眼疾病之一,视网膜新生血管的出现是糖网病恶化的重要标志.为了更准确地检测出视网膜新生血管,本文提出了一种基于彩色眼底图的视网膜新生血管检测方法.首先通过一种改进的U形卷积神经网络... 糖尿病性视网膜病变(简称糖网病)是主要的致盲眼疾病之一,视网膜新生血管的出现是糖网病恶化的重要标志.为了更准确地检测出视网膜新生血管,本文提出了一种基于彩色眼底图的视网膜新生血管检测方法.首先通过一种改进的U形卷积神经网络对血管进行分割;然后利用滑动窗口提取特定区域内血管的形态特征,通过支持向量机将窗口内的血管分为普通血管和新生血管.使用来自MESSIDOR数据集和Kaggle数据集的含有视网膜新生血管的彩色眼底图对实验进行训练和测试,结果表明该方法对视网膜新生血管检测的准确率为95.96%;该方法在糖网病计算机辅助诊断方面有潜在的应用前景. 展开更多
关键词 视网膜新生血管检测 血管分割 U形网络 深度学习
在线阅读 下载PDF
基于注意力机制的医学影像深度哈希检索算法
5
作者 朱承璋 黄嘉儿 +2 位作者 肖亚龙 王晗 邹北骥 《计算机科学》 CSCD 北大核心 2022年第8期113-119,共7页
针对现阶段医学影像检索中检索性能差、精度低、缺乏可解释性等一系列问题,提出了一种结合了注意力机制的医学影像检索算法。以深度卷积神经网络为基础,以贝叶斯模型为框架,所提算法引入了由语义特征引导的注意力机制模块,通过分类网络... 针对现阶段医学影像检索中检索性能差、精度低、缺乏可解释性等一系列问题,提出了一种结合了注意力机制的医学影像检索算法。以深度卷积神经网络为基础,以贝叶斯模型为框架,所提算法引入了由语义特征引导的注意力机制模块,通过分类网络的引导,生成包含语义信息的局部特征描述子,同时使用全局特征与富含语义信息的局部特征作为哈希网络的输入,引导哈希网络从全局和局部的角度关注重要特征区域,增强了哈希编码的特征表达能力,并引入加权似然估计函数解决了正负样本对数量不均衡的问题。采用MAP和NDCG作为评价指标,选择ChestX-ray14数据集进行实验,将所提算法与目前常用的深度哈希方法进行对比。实验结果表明,本文算法在哈希编码不同码位下的MAP值和NDCG值都远优于现有的深度哈希方法,证明了其有效性。 展开更多
关键词 医学影像检索 注意力机制 深度哈希 贝叶斯框架 卷积神经网络
在线阅读 下载PDF
医学影像处理的深度学习可解释性研究进展 被引量:13
6
作者 陈园琼 邹北骥 +3 位作者 张美华 廖望旻 黄嘉儿 朱承璋 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2021年第1期18-29,40,共13页
随着医学影像数据的迅速增长,传统的影像分析方法给医生带来巨大挑战。利用计算机视觉技术提供自动或半自动辅助诊断,可大大缓解人工阅片压力,提高诊断的准确性,促进医疗流程的标准化建设等。目前,深度学习卷积神经网络在医学影像处理... 随着医学影像数据的迅速增长,传统的影像分析方法给医生带来巨大挑战。利用计算机视觉技术提供自动或半自动辅助诊断,可大大缓解人工阅片压力,提高诊断的准确性,促进医疗流程的标准化建设等。目前,深度学习卷积神经网络在医学影像处理中已取得不俗表现,但深度学习“黑匣子”的不可解释性阻碍了智能医疗诊断的发展。为增强对医学影像数据处理的深度学习可解释性的了解,对近几年相关研究进展进行了综述。首先,综述了深度学习在医学领域的应用现状及面临的问题,对神经网络的可解释性内涵进行了讨论;然后,从现有深度学习可解释性的常见方法出发,重点讨论了医学影像处理的深度学习可解释性研究进展;最后,探讨了医学影像处理的深度学习可解释性的发展趋势。 展开更多
关键词 深度学习 医学影像 可解释性
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部