针对铜吹炼Pierce-Smith转炉(Pierce-Smith Converter,P-S转炉)存在的高能耗及设备维护问题,采用VOF(Volume of Fluid)两相流与Realizable k-ε湍流耦合模型,对炉内气-液两相流行为与壁面剪切应力分布进行数值模拟,系统研究风口直径及...针对铜吹炼Pierce-Smith转炉(Pierce-Smith Converter,P-S转炉)存在的高能耗及设备维护问题,采用VOF(Volume of Fluid)两相流与Realizable k-ε湍流耦合模型,对炉内气-液两相流行为与壁面剪切应力分布进行数值模拟,系统研究风口直径及气体入口速度对熔池动力学的影响机制。研究表明:增大风口直径显著降低搅拌死区体积,扩展高湍动能区域覆盖范围,而提升气体入口速度可增强气泡上升区湍流强度。气体入口速度通过强化局部湍流促进熔池传质效率,风口直径变化可提升炉内混合均匀性。合理选择气体入口速度与风口直径可降低炉壁剪切应力峰值,抑制搅拌死区形成,为工业过程参数优化提供理论依据。展开更多
文摘针对铜吹炼Pierce-Smith转炉(Pierce-Smith Converter,P-S转炉)存在的高能耗及设备维护问题,采用VOF(Volume of Fluid)两相流与Realizable k-ε湍流耦合模型,对炉内气-液两相流行为与壁面剪切应力分布进行数值模拟,系统研究风口直径及气体入口速度对熔池动力学的影响机制。研究表明:增大风口直径显著降低搅拌死区体积,扩展高湍动能区域覆盖范围,而提升气体入口速度可增强气泡上升区湍流强度。气体入口速度通过强化局部湍流促进熔池传质效率,风口直径变化可提升炉内混合均匀性。合理选择气体入口速度与风口直径可降低炉壁剪切应力峰值,抑制搅拌死区形成,为工业过程参数优化提供理论依据。