As an emerging electrochemical energy storage technology,potassium-ion batteries(PIBs),which are considered a“beyond Li-ion”battery system,have attracted tremendous attention due to their potential for providing a h...As an emerging electrochemical energy storage technology,potassium-ion batteries(PIBs),which are considered a“beyond Li-ion”battery system,have attracted tremendous attention due to their potential for providing a high energy density,and having abundant resource,and a low cost.However,their commercialization is hindered by the lack of practical anode materials.Among various reported anodes,conventional carbon materials,including graphite,soft carbon,and hard carbon,have emerged as promising candidates because of their abundance,low cost,high conductivity,and tunable structures.However,these materials have problems such as a low initial Coulombic efficiency,significant volume expansion,and unsatisfactory cyclability and rate performance.Various strategies to solve these have been explored,including optimizing the interlayer spacing,structural design,surface coating,constructing a multifunctional framework,and forming composites.This review provides a comprehensive overview of the recent progress in conventional carbon anodes,highlighting structural design strategies,mechanisms for improving the electrochemical performance,and underscores the critical role of these materials in promoting the practical application of PIBs.展开更多
Potassium-ion batteries(PIBs)hold promise for large-scale energy storage,necessitating the development of high-performance anode materials.Carbons with the advantage of structural versatility,are recognized as the mos...Potassium-ion batteries(PIBs)hold promise for large-scale energy storage,necessitating the development of high-performance anode materials.Carbons with the advantage of structural versatility,are recognized as the most promising anode materials for their commercialization,however the relationship between the carbon anode structure and its electrochemical performance remains unclear.A series of pitch-based soft carbons with different structures were fabricated using carbonization temperatures in the range 600–1400℃,and their changes in carbon configuration and K-storage performance as a function of carbonization temperature were investigated.Correlations between the carbon crystal size and the low-potential plateau region capacity and between the degree of structural disorder of the carbons with their sloping region capacity were revealed.Among all samples,that obtained by carbonization at 700℃had a relatively high degree of disorder and a large interlayer spacing,and had a high reversible capacity of 329.4 mAh g^(-1) with a high initial coulombic efficiency of 72.81%,and maintained a high capacity of 144.2 mAh g^(-1) at the current rate of 5 C.These findings improve our fundamental understanding of the K-storage process in carbon anodes,and thus facilitate the advance of PIBs.展开更多
铁铬氧化还原液流电池(ICRFB)是一种具有成本效益的可规模化储能系统,其利用资源丰富、低成本的铬和铁作为电解液的活性物质。然而,ICRFB存在Cr^(3+)/Cr^(2+)电化学活性低、负极易产生严重的析氢反应(HER)等问题。本文报道了一种简单的...铁铬氧化还原液流电池(ICRFB)是一种具有成本效益的可规模化储能系统,其利用资源丰富、低成本的铬和铁作为电解液的活性物质。然而,ICRFB存在Cr^(3+)/Cr^(2+)电化学活性低、负极易产生严重的析氢反应(HER)等问题。本文报道了一种简单的合成策略,即通过自聚合和湿化学还原方法结合煅烧处理,在氮掺杂石墨毡(GF)表面沉积了非晶态铋(Bi)纳米颗粒(NPs),其作为ICRFB的负极材料时可展示出高效的电化学性能。生成的BiNPs与H+形成中间体,极大地抑制了HER副反应。此外,Bi的引入和GF表面的N掺杂通过协同作用显著提高了Fe^(2+)/Fe^(3+)和Cr^(3+)/Cr^(2+)的电化学活性,降低了电荷传递电阻,提高了反应传质速率。在不同的电流密度下,经25次循环,库仑效率仍高达97.7%。在60.0 mA cm^(-2)电流密度下,能量效率达到85.8%,超过了许多其他报道的材料。循环100次后容量达到862.7 mAh/L,约为GF的5.3倍。展开更多
文摘As an emerging electrochemical energy storage technology,potassium-ion batteries(PIBs),which are considered a“beyond Li-ion”battery system,have attracted tremendous attention due to their potential for providing a high energy density,and having abundant resource,and a low cost.However,their commercialization is hindered by the lack of practical anode materials.Among various reported anodes,conventional carbon materials,including graphite,soft carbon,and hard carbon,have emerged as promising candidates because of their abundance,low cost,high conductivity,and tunable structures.However,these materials have problems such as a low initial Coulombic efficiency,significant volume expansion,and unsatisfactory cyclability and rate performance.Various strategies to solve these have been explored,including optimizing the interlayer spacing,structural design,surface coating,constructing a multifunctional framework,and forming composites.This review provides a comprehensive overview of the recent progress in conventional carbon anodes,highlighting structural design strategies,mechanisms for improving the electrochemical performance,and underscores the critical role of these materials in promoting the practical application of PIBs.
文摘Potassium-ion batteries(PIBs)hold promise for large-scale energy storage,necessitating the development of high-performance anode materials.Carbons with the advantage of structural versatility,are recognized as the most promising anode materials for their commercialization,however the relationship between the carbon anode structure and its electrochemical performance remains unclear.A series of pitch-based soft carbons with different structures were fabricated using carbonization temperatures in the range 600–1400℃,and their changes in carbon configuration and K-storage performance as a function of carbonization temperature were investigated.Correlations between the carbon crystal size and the low-potential plateau region capacity and between the degree of structural disorder of the carbons with their sloping region capacity were revealed.Among all samples,that obtained by carbonization at 700℃had a relatively high degree of disorder and a large interlayer spacing,and had a high reversible capacity of 329.4 mAh g^(-1) with a high initial coulombic efficiency of 72.81%,and maintained a high capacity of 144.2 mAh g^(-1) at the current rate of 5 C.These findings improve our fundamental understanding of the K-storage process in carbon anodes,and thus facilitate the advance of PIBs.
文摘铁铬氧化还原液流电池(ICRFB)是一种具有成本效益的可规模化储能系统,其利用资源丰富、低成本的铬和铁作为电解液的活性物质。然而,ICRFB存在Cr^(3+)/Cr^(2+)电化学活性低、负极易产生严重的析氢反应(HER)等问题。本文报道了一种简单的合成策略,即通过自聚合和湿化学还原方法结合煅烧处理,在氮掺杂石墨毡(GF)表面沉积了非晶态铋(Bi)纳米颗粒(NPs),其作为ICRFB的负极材料时可展示出高效的电化学性能。生成的BiNPs与H+形成中间体,极大地抑制了HER副反应。此外,Bi的引入和GF表面的N掺杂通过协同作用显著提高了Fe^(2+)/Fe^(3+)和Cr^(3+)/Cr^(2+)的电化学活性,降低了电荷传递电阻,提高了反应传质速率。在不同的电流密度下,经25次循环,库仑效率仍高达97.7%。在60.0 mA cm^(-2)电流密度下,能量效率达到85.8%,超过了许多其他报道的材料。循环100次后容量达到862.7 mAh/L,约为GF的5.3倍。