经典低阶频率响应模型可快速计算各项频率指标,但由于高比例新能源系统扰动类型多样,运行方式复杂多变,难以准确获取系统参数和扰动功率大小,同时模型本身线性化会引起较大误差,导致频率预测值和实际值存在较大差异。为使频率响应模型...经典低阶频率响应模型可快速计算各项频率指标,但由于高比例新能源系统扰动类型多样,运行方式复杂多变,难以准确获取系统参数和扰动功率大小,同时模型本身线性化会引起较大误差,导致频率预测值和实际值存在较大差异。为使频率响应模型适应实际应用场景中高精度的要求,该文提出了模型-数据融合驱动的频率稳定智能增强判别方法(model-data driven intelligent enhanced method for frequency stability discrimination,MD-IEFSD),利用扰动初期频率响应数据对模型关键参数进行辨识,建立结合卷积神经网络和注意力机制的CNN-Attention频率参数预测模型,构建了融合参数预测误差和频率响应曲线预测误差的损失函数,引入了参数的敏感性和学习速率的分析,实现了频率稳定性的准确判别。最后以中国电科院万节点测试系统为算例,验证所提方法的可行性和有效性。展开更多
基于深度学习的目标检测算法已广泛应用,与此同时最近的一系列研究表明现有的目标检测算法容易受到对抗性攻击的威胁,造成检测器失效.然而,聚焦于自动驾驶场景下对抗攻击的迁移性研究较少,并且鲜有研究关注该场景下对抗攻击的隐蔽性.针...基于深度学习的目标检测算法已广泛应用,与此同时最近的一系列研究表明现有的目标检测算法容易受到对抗性攻击的威胁,造成检测器失效.然而,聚焦于自动驾驶场景下对抗攻击的迁移性研究较少,并且鲜有研究关注该场景下对抗攻击的隐蔽性.针对现有研究的不足,将对抗样本的优化类比于机器学习模型的训练过程,设计了提升攻击迁移性的算法模块.并且通过风格迁移的方式和神经渲染(neural rendering)技术,提出并实现了迁移隐蔽攻击(transferable and stealthy attack,TSA)方法.具体来说,首先将对抗样本进行重复拼接,结合掩膜生成最终纹理,并将其应用于整个车辆表面.为了模拟真实的环境条件,使用物理变换函数将渲染的伪装车辆嵌入逼真的场景中.最后,通过设计的损失函数优化对抗样本.仿真实验表明,TSA方法在攻击迁移能力上超过了现有方法,并在外观上具有一定的隐蔽性.此外,通过物理域实验进一步证明了TSA方法在现实世界中能够保持有效的攻击性能.展开更多
文摘经典低阶频率响应模型可快速计算各项频率指标,但由于高比例新能源系统扰动类型多样,运行方式复杂多变,难以准确获取系统参数和扰动功率大小,同时模型本身线性化会引起较大误差,导致频率预测值和实际值存在较大差异。为使频率响应模型适应实际应用场景中高精度的要求,该文提出了模型-数据融合驱动的频率稳定智能增强判别方法(model-data driven intelligent enhanced method for frequency stability discrimination,MD-IEFSD),利用扰动初期频率响应数据对模型关键参数进行辨识,建立结合卷积神经网络和注意力机制的CNN-Attention频率参数预测模型,构建了融合参数预测误差和频率响应曲线预测误差的损失函数,引入了参数的敏感性和学习速率的分析,实现了频率稳定性的准确判别。最后以中国电科院万节点测试系统为算例,验证所提方法的可行性和有效性。
文摘基于深度学习的目标检测算法已广泛应用,与此同时最近的一系列研究表明现有的目标检测算法容易受到对抗性攻击的威胁,造成检测器失效.然而,聚焦于自动驾驶场景下对抗攻击的迁移性研究较少,并且鲜有研究关注该场景下对抗攻击的隐蔽性.针对现有研究的不足,将对抗样本的优化类比于机器学习模型的训练过程,设计了提升攻击迁移性的算法模块.并且通过风格迁移的方式和神经渲染(neural rendering)技术,提出并实现了迁移隐蔽攻击(transferable and stealthy attack,TSA)方法.具体来说,首先将对抗样本进行重复拼接,结合掩膜生成最终纹理,并将其应用于整个车辆表面.为了模拟真实的环境条件,使用物理变换函数将渲染的伪装车辆嵌入逼真的场景中.最后,通过设计的损失函数优化对抗样本.仿真实验表明,TSA方法在攻击迁移能力上超过了现有方法,并在外观上具有一定的隐蔽性.此外,通过物理域实验进一步证明了TSA方法在现实世界中能够保持有效的攻击性能.