期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
基于深度卷积和多层尺度特征融合的冠脉造影图像血管分割
1
作者 许洋 翟楠楠 +2 位作者 倪维臻 谭强 王金甲 《中国生物医学工程学报》 北大核心 2025年第1期34-42,共9页
冠状动脉造影是诊疗冠心病等心血管疾病的一种重要手段,快速而准确的血管分割对诊疗心血管疾病具有十分重要的意义。针对现有冠状动脉造影血管分割算法对细微血管的分割能力不强、分割血管的连通性较差、抗噪声及伪影能力弱等问题,本研... 冠状动脉造影是诊疗冠心病等心血管疾病的一种重要手段,快速而准确的血管分割对诊疗心血管疾病具有十分重要的意义。针对现有冠状动脉造影血管分割算法对细微血管的分割能力不强、分割血管的连通性较差、抗噪声及伪影能力弱等问题,本研究吸取了Transformer结构长距离依赖与跨域跳转连接的优点,分别采用上下文分层聚合和多尺度特征融合的方法,对U型分割网络进行改进,称HAM-UNet。首先,采取必要的图像预处理方法,对原有的冠脉造影图像进行一些特征强化,并扩大了实验数据;然后,将预处理好的图片以HAM-UNet的方法进行分割。编码器同时结合深度卷积与残差结构,可以高效的捕获全局特征并有效增强网络细节感知力,提升分割精度的同时提高分割连通性。解码器进行了多尺度的特征融合,并且加入上采样跳转连接,网络的全局感知得到提高,有效降低了无关信息的影响。所使用数据集来自于天津市医科大学总医院的221张图像和秦皇岛市第一医院的494张图像,在两个数据集上,HAM-UNet算法的准确率分别为0.983和0.998,IOU分别为0.857和0.908,Dice分数分别为0.842和0.883;综合分割性能比U-Net和Att-UNet等算法有较大提升。 展开更多
关键词 图像分割 冠脉造影图像分割 U-Net 深度卷积 多层尺度融合
在线阅读 下载PDF
基于多重特征提取和点对应关系的三维点云非刚配准 被引量:1
2
作者 吴亦奇 何嘉乐 +3 位作者 张甜甜 张德军 李艳丽 陈壹林 《图学学报》 北大核心 2025年第1期150-158,共9页
为实现非刚点云间的精确配准,并在配准过程中准确建立点对应关系,提出了一种基于多重特征提取和点对应关系建模的无监督三维点云非刚配准网络。网络由多重特征提取、匹配精细化和形状感知注意力模块构成。首先,提取输入的源点云与目标... 为实现非刚点云间的精确配准,并在配准过程中准确建立点对应关系,提出了一种基于多重特征提取和点对应关系建模的无监督三维点云非刚配准网络。网络由多重特征提取、匹配精细化和形状感知注意力模块构成。首先,提取输入的源点云与目标点云的多重特征,并计算特征之间的相似度获得特征相似度矩阵。随后,将特征相似矩阵输入到网络中的匹配精细化模块中使用软硬匹配结合的方法生成点对应关系矩阵。最后,将目标点云的特征、源点云和点对应关系矩阵输入形状感知注意力模块,得到最终配准结果。通过此方法,配准结果可以同时具有与目标点云的点对应关系和形状相似性。在公共数据集及合成数据集上进行实验,可视化效果及定量结果比较表明,该方法可准确获得源点云与目标点云间的点对应关系和形状相似性,有效实现无监督三维点云非刚配准。 展开更多
关键词 点云 非刚配准 点对应关系 形状感知注意力
在线阅读 下载PDF
改进DDPG的端边DNN协同推理策略
3
作者 和涛 栗娟 《计算机工程与应用》 北大核心 2025年第2期304-315,共12页
当前基于端边的深度神经网络(deep neural network,DNN)协同推理策略仅关注于优化时延敏感型任务的推理时延,而未考虑能耗敏感型任务的推理能耗成本,以及DNN划分后在异构边缘服务器之间的高效卸载问题。基于此,提出一种改进深度确定性... 当前基于端边的深度神经网络(deep neural network,DNN)协同推理策略仅关注于优化时延敏感型任务的推理时延,而未考虑能耗敏感型任务的推理能耗成本,以及DNN划分后在异构边缘服务器之间的高效卸载问题。基于此,提出一种改进深度确定性策略梯度(deep deterministic policy gradients,DDPG)的端边DNN协同推理策略,综合考虑任务对时延与能耗的敏感度,进而对推理成本进行综合优化。该策略将DNN划分与计算卸载问题分离,对不同协同设备建立预测模型,去预测出协同推理DNN的最优划分点与推理综合成本;根据预测的推理综合成本建立奖励函数,使用DDPG算法制定每个DNN推理任务的卸载策略,进而进行协同推理。实验结果证明,相比其他DNN协同推理策略,该策略在复杂的DNN协同推理环境下决策更高效,推理时延平均减少了46%,推理能耗平均减少了44%,推理综合成本平均降低了46%。 展开更多
关键词 边缘智能 深度神经网络(DNN) 协同推理 深度确定性策略梯度 任务卸载 能耗优化
在线阅读 下载PDF
融合视觉信息感知与虚拟现实的康复辅助系统 被引量:1
4
作者 刘政 李勇 胡立坤 《小型微型计算机系统》 CSCD 北大核心 2024年第6期1405-1412,共8页
当前人工智能技术在康复领域大多用于严重运动障碍群体,而中国现阶段人口老龄化加剧,会导致轻型运动障碍人群的大量增加,亟需更加智能化的运动训练与康复系统.针对轻型运动损伤患者以及普通老年群体,本文提出了一种基于视觉的运动信号... 当前人工智能技术在康复领域大多用于严重运动障碍群体,而中国现阶段人口老龄化加剧,会导致轻型运动障碍人群的大量增加,亟需更加智能化的运动训练与康复系统.针对轻型运动损伤患者以及普通老年群体,本文提出了一种基于视觉的运动信号感知与虚拟现实的康复辅助系统,该系统通过实时推断人体骨骼模型,利用虚拟现实游戏与骨骼点运动进行交互,实现引导康复动作,最终对康复动作进行评价并给出交互界面提示.本文招募受试者参加实验,在闭环训练中受试者通过本文系统在虚拟康复游戏的引导反馈下复现标准康复动作,对比分析受试者实验结果,验证了所提出方法的有效性与可行性. 展开更多
关键词 轻型康复训练 虚拟现实 骨骼点运动交互 动作评价
在线阅读 下载PDF
非对称端到端的无监督图像去雨网络
5
作者 江锐 刘威 +1 位作者 陈成 卢涛 《计算机应用》 CSCD 北大核心 2024年第3期922-930,共9页
现有的基于学习的单幅图像去雨网络大都关注雨天图像中雨痕对于视觉成像的影响,而忽略了雨天环境下由于空气中湿度的增加所产生的雾气对视觉成像的影响,因此造成去雨后图像的生成质量低、纹理细节信息模糊等问题。针对该问题,提出一种... 现有的基于学习的单幅图像去雨网络大都关注雨天图像中雨痕对于视觉成像的影响,而忽略了雨天环境下由于空气中湿度的增加所产生的雾气对视觉成像的影响,因此造成去雨后图像的生成质量低、纹理细节信息模糊等问题。针对该问题,提出一种非对称端到端的无监督图像去雨网络模型,该模型主要包含雨雾去除网络、雨雾特征提取网络和雨雾生成网络,并由它们组成两个不同数据域映射转换模块:Rain-Clean-Rain和Clean-Rain-Clean。上述三个子网络构成并行的两条转换路径:去雨路径和雨雾特征提取路径。在雨雾特征提取路径上,提出一种基于全局和局部注意力机制的雨雾感知提取网络,利用雨雾特征存在的全局自相似性和局部差异性学习雨-雾相关特征;在去雨路径上,引入雨天图像退化模型和上述提取的雨雾相关特征作为先验知识以增强雨雾图像生成的能力,从而约束雨雾去除网络,提高它从雨天数据域到无雨数据域的映射转换能力。在不同雨天图像数据集上的实验结果表明,与较先进的去雨方法CycleDerain相比,在合成雨雾数据集HeavyRain上所提方法的峰值信噪比(PSNR)提升了31.55%,能适应不同的雨天场景,具有更好的泛化性,并且能更好地复原图像的细节和纹理信息。 展开更多
关键词 单幅图像去雨 非配对训练 注意力机制 无监督学习 先验知识
在线阅读 下载PDF
基于多尺度特征融合的由粗到精点云形状补全
6
作者 张德军 王杨 +3 位作者 谭雪峰 吴亦奇 陈壹林 何发智 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第4期523-532,共10页
为了以由粗到精的方式实现点云形状补全,提出一个端到端的两阶段多尺度特征融合网络,其中的每个阶段都是由一个编码器-解码器构成.第1阶段中,首先利用点集抽取模块提取残缺点云的全局特征,在获取不同分辨率点特征的同时能关注更多的局... 为了以由粗到精的方式实现点云形状补全,提出一个端到端的两阶段多尺度特征融合网络,其中的每个阶段都是由一个编码器-解码器构成.第1阶段中,首先利用点集抽取模块提取残缺点云的全局特征,在获取不同分辨率点特征的同时能关注更多的局部邻域特征,然后使用多层感知机作为解码器生成粗糙的点云骨架;第2阶段中,利用点云骨架和残缺点云提取多尺度局部特征,并通过注意力机制与第1阶段中的多尺度全局特征相互融合,使得每个点都包含全局和局部几何信息;最后将第2阶段中的全局特征和多尺度局部特征逐步进行上采样,并通过多层感知机生成精细的完整点云.采用倒角距离作为评价标准,在ShapeNet,MVP和Completion3D数据集上进行点云补全实验的结果表明,误差分别比基准网络降低17.1%,3.9%和13.9%,验证了所提网络的有效性. 展开更多
关键词 点云补全 多尺度特征融合 由粗到精 编码器-解码器
在线阅读 下载PDF
非规范化中文地址的行政区划提取算法 被引量:7
7
作者 李晓林 黄爽 +1 位作者 卢涛 李霖 《计算机应用》 CSCD 北大核心 2017年第3期876-882,共7页
由于互联网上中文地址的非规范化表达,导致互联网中的中文地址信息在地理位置服务中难以直接应用。针对此问题,提出一种非规范中文地址的行政区划提取算法。首先,对原始数据进行"路"特征词分组预处理;再利用行政区划字典和移... 由于互联网上中文地址的非规范化表达,导致互联网中的中文地址信息在地理位置服务中难以直接应用。针对此问题,提出一种非规范中文地址的行政区划提取算法。首先,对原始数据进行"路"特征词分组预处理;再利用行政区划字典和移动窗口最大匹配算法,从中文地址中提取所有可能的行政区划数据集;然后,利用中文地址行政区划元素之间具有层次关系的特点,建立行政区划条件集合运算规则,对获取的数据集进行集合运算;再利用行政区划匹配度建立一种行政区划集合解析规则,来计算行政区划可信度;最后,得到可信度最大信息量最完整的中文地址的行政区划。利用从互联网中提取的约25万条中文地址数据进行是否采用"路"特征词分组处理以及是否进行可信度计算处理,对算法的可用性进行了验证,并与目前的地址匹配技术进行对比,准确率达到93.51%。 展开更多
关键词 集合运算 行政区划 中文地址 移动窗口 匹配度 解析规则
在线阅读 下载PDF
基于语义分割的红外和可见光图像融合 被引量:13
8
作者 周华兵 侯积磊 +3 位作者 吴伟 张彦铎 吴云韬 马佳义 《计算机研究与发展》 EI CSCD 北大核心 2021年第2期436-443,共8页
红外图像即使在低光照条件下,也能根据热辐射的差异将目标与背景区分开来,而可见光图像具有高空间分辨率的纹理细节,此外,红外和可见光图像都含有相应的语义信息.因此,红外与可见光图像融合,需要既保留红外图像的辐射信息,也保留可见光... 红外图像即使在低光照条件下,也能根据热辐射的差异将目标与背景区分开来,而可见光图像具有高空间分辨率的纹理细节,此外,红外和可见光图像都含有相应的语义信息.因此,红外与可见光图像融合,需要既保留红外图像的辐射信息,也保留可见光图像的纹理细节,同时,也要反映出二者的语义信息.而语义分割可以将图像转换为带有语义的掩膜,提取源图像的语义信息.提出了一种基于语义分割的红外和可见光图像融合方法,能够克服现有融合方法不能针对性地提取不同区域特有信息的缺点.使用生成式对抗神经网络,并针对源图像的不同区域设计了2种不同的损失函数,以提高融合图像的质量.首先通过语义分割得到含有红外图像目标区域语义信息的掩模,并利用掩模将红外和可见光图像分割为红外图像目标区域、红外图像背景区域、可见光图像目标区域和可见光图像背景区域;然后对目标区域和背景区域分别采用不同的损失函数得到目标区域和背景区域的融合图像;最后将2幅融合图像结合起来得到最终融合图像.实验表明,融合结果目标区域对比度更高,背景区域纹理细节更丰富,提出的方法取得了较好的融合效果. 展开更多
关键词 红外图像 可见光图像 图像融合 语义分割 掩膜
在线阅读 下载PDF
基于半耦合稀疏表达的极低分辨率人脸识别 被引量:2
9
作者 杨威 卢涛 汪浩 《计算机工程与应用》 CSCD 北大核心 2017年第22期169-175,共7页
现有基于学习的人脸超分辨率算法假设高低分辨率特征具有流形一致性(耦合字典学习),然而低分辨率图像的降质过程使得高低分辨率特征产生了"一对多"的映射关系偏差,减少了极低分辨率图像特征的判决信息,降低了超分辨率重建图... 现有基于学习的人脸超分辨率算法假设高低分辨率特征具有流形一致性(耦合字典学习),然而低分辨率图像的降质过程使得高低分辨率特征产生了"一对多"的映射关系偏差,减少了极低分辨率图像特征的判决信息,降低了超分辨率重建图像的识别率。针对这一问题,引入了半耦合稀疏字典学习模型,松弛高低分辨率流形一致性假设,同时学习稀疏表达字典和稀疏表达系数之间的映射函数,提升高低分辨率判决特征的一致性,在此基础上,引入协同分类模型,实现半耦合特征的高效分类。实验表明:相比于传统稀疏表达分类算法,算法不仅提高了识别率,并且还大幅度降低了时间开销,验证了半耦合稀疏学习字典在人脸识别中的有效性。 展开更多
关键词 稀疏表达 半耦合 协同表达分类 极低分辨率 人脸识别
在线阅读 下载PDF
基于组合学习的人脸超分辨率算法 被引量:5
10
作者 许若波 卢涛 +1 位作者 王宇 张彦铎 《计算机应用》 CSCD 北大核心 2020年第3期710-716,共7页
现有的基于深度学习的人脸超分辨算法大部分仅仅利用一种网络分区重建高分辨率输出图像,并未考虑人脸图像中的结构性信息,导致了在人脸的重要器官重建上缺乏足够的细节信息。针对这一问题,提出一种基于组合学习的人脸超分辨率算法。该... 现有的基于深度学习的人脸超分辨算法大部分仅仅利用一种网络分区重建高分辨率输出图像,并未考虑人脸图像中的结构性信息,导致了在人脸的重要器官重建上缺乏足够的细节信息。针对这一问题,提出一种基于组合学习的人脸超分辨率算法。该算法独立采用不同深度学习模型的优势重建感兴趣的区域,由此在训练网络的过程中每个人脸区域的数据分布不同,不同的子网络能够获得更精确的先验信息。首先,对人脸图像采用超像素分割算法生成人脸组件部分和人脸背景图像;然后,采用人脸组件生成对抗网络(C-GAN)独立重建人脸组件图像块,并采用人脸背景重建网络生成人脸背景图像;其次,使用人脸组件融合网络将两种不同模型重建的人脸组件图像块自适应融合;最后,将生成的人脸组件图像块合并至人脸背景图像中,重建出最终的人脸图像。在FEI数据集上的实验结果表明,与人脸图像超分辨率算法通过组件生成和增强学习幻构人脸图像(LCGE)及判决性增强的生成对抗网络(EDGAN)相比,所提算法的峰值信噪比(PSNR)值分别高出1.23 dB和1.11 dB。所提算法能够采用不同深度学习模型的优势组合学习重建更精准的人脸图像,同时拓展了图像重建先验的来源。 展开更多
关键词 组合学习 人脸幻构 生成对抗网络 融合网络 深度学习
在线阅读 下载PDF
面向Docker容器的动态负载算法 被引量:6
11
作者 刘邦邦 易国洪 黄祖源 《计算机科学》 CSCD 北大核心 2021年第6期276-281,共6页
为了提高Docker容器服务器集群的抗并发性和缩短平均响应时间,文中设计了一种动态负载容器服务器的算法DLOAD(Dynamic Loading Algorithm)。该算法在WRR负载算法的基础上引用了实时权值的概念,弥补了WRR算法在权值给定方面的不足,优化了... 为了提高Docker容器服务器集群的抗并发性和缩短平均响应时间,文中设计了一种动态负载容器服务器的算法DLOAD(Dynamic Loading Algorithm)。该算法在WRR负载算法的基础上引用了实时权值的概念,弥补了WRR算法在权值给定方面的不足,优化了Docker容器服务器的负载算法。DLOAD算法将记录服务器的资源信息,将容器连接数占比、CPU利用率、内存利用率、网络IO占比、磁盘IO占比和平均响应时间作为算法参数,计算出Docker容器服务器的实时权值,并将实时权值记录到负载服务器的权值表中。负载服务器查询权值表后调用WRR算法,推荐最优的Docker容器服务器ID进行负载。通过仿真实验,从Docker容器服务器的平均响应时间和吞吐量这两个方面对改进前后的算法进行分析和对比,得出改进后的DLOAD算法能够更加高效地缩短服务器的平均响应时间和改善抗并发性,有效提升了容器服务器的性能。 展开更多
关键词 DOCKER 容器服务器 高并发 动态负载 实时权值 抗并发性
在线阅读 下载PDF
联合协方差矩阵重构和ADMM的鲁棒波束形成 被引量:5
12
作者 王兆彬 巩朋成 +1 位作者 邓薇 廖桂生 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2023年第4期64-71,共8页
为解决传统波束形成器在干扰位置发生扰动和导向矢量失配时,造成自适应权重的不匹配,从而导致算法性能急剧下降,甚至期望信号相消的问题,提出一种联合协方差矩阵重构和交替方向乘子法(Alternating direction method of multipliers,ADMM... 为解决传统波束形成器在干扰位置发生扰动和导向矢量失配时,造成自适应权重的不匹配,从而导致算法性能急剧下降,甚至期望信号相消的问题,提出一种联合协方差矩阵重构和交替方向乘子法(Alternating direction method of multipliers,ADMM)的鲁棒波束形成方法。对此,首先基于波束形成器最大输出功率准则,设计了求解最优导向矢量的优化模型。接着,根据Capon算法空间功率谱函数,利用定义的干扰范围对协方差矩阵进行重构,以展宽零陷并增强系统抗运动干扰能力。最后,关于导向矢量的二次不等式约束问题,本质为估计导向矢量和期望导向矢量间的差异,该方法利用ADMM对该二次规划问题进行迭代求解,并在每次迭代中获得导向矢量的具体解。另外,也分析了算法的复杂度。实验结果表明:对比现有的波束形成算法,在干扰处加宽了零陷,提高了波束的抗干扰性;结合复杂度也证明了其计算速度优于现有的算法,并且能够很好地校正失配导向矢量。本方法也为求解二次不等式约束问题和提高波束形成算法性能提供了一种思路和途径。 展开更多
关键词 波束形成 协方差矩阵重构 零陷展宽 二次约束 交替方向乘子法
在线阅读 下载PDF
高斯卷积角:用于叶片图像检索的形状描述不变量 被引量:2
13
作者 陈鑫 王斌 姬子恒 《软件学报》 EI CSCD 北大核心 2021年第5期1565-1578,共14页
植物叶片图像的识别是计算机视觉和图像处理技术在生物学和现代农业中的一个重要应用.其挑战性在于植物叶片种类数量巨大,且许多叶片图像具有很大的类间相似性,使得描述叶片图像的类间差异变得非常困难.提出一种称为高斯卷积角的叶片形... 植物叶片图像的识别是计算机视觉和图像处理技术在生物学和现代农业中的一个重要应用.其挑战性在于植物叶片种类数量巨大,且许多叶片图像具有很大的类间相似性,使得描述叶片图像的类间差异变得非常困难.提出一种称为高斯卷积角的叶片形状描述方法.该方法用高斯函数与叶片轮廓点的左右邻域向量的卷积产生高斯卷积角,再通过改变高斯函数的尺度参数,生成多尺度的高斯卷积角,组成特征向量.组合各轮廓点的特征向量,构成一个特征向量集合,作为叶片形状的描述子.两幅叶片图像的相似性可以简单地通过计算其高斯卷积角特征向量集合间的Hausdorff距离来进行度量.高斯卷积角描述子具有平移、旋转、缩放和镜像变换的内在不变性,该不变性从理论上得到了证明.该描述子还具有由粗到细的描述叶片形状的优良特性,使得其具有很强的叶片辨识能力.通过用中外两个公开的叶片图像数据集进行算法性能测试,实验结果表明,该方法优于现有的其他同类方法,从而验证了该方法的有效性. 展开更多
关键词 叶片图像识别 形状描述 高斯卷积角 多尺度描述 图像检索
在线阅读 下载PDF
嵌入注意力机制的轻量级钢筋检测网络 被引量:1
14
作者 李姚舜 刘黎志 《计算机应用》 CSCD 北大核心 2022年第9期2900-2908,共9页
智慧工地中的设备内存和计算能力有限,在现场的设备上通过目标检测对钢筋进行实时检测具有很大的难度,而且其钢筋检测速度慢、模型部署成本高。针对这些问题,在YOLOv3网络的基础上,提出了一个嵌入注意力机制的轻量级钢筋检测网络RebarNe... 智慧工地中的设备内存和计算能力有限,在现场的设备上通过目标检测对钢筋进行实时检测具有很大的难度,而且其钢筋检测速度慢、模型部署成本高。针对这些问题,在YOLOv3网络的基础上,提出了一个嵌入注意力机制的轻量级钢筋检测网络RebarNet。首先,利用残差块作为网络的基本单元来构建特征提取结构,并用其提取局部和上下文信息;其次,在残差块中添加通道注意力(CA)模块和空间注意力(SA)模块,以调整特征图的注意力权重,并提升网络提取特征的能力;然后,采用特征金字塔融合模块,以增大网络的感受野,并优化中等钢筋图像的提取效果;最后,输出经过8倍下采样后的52×52通道的特征图用于后处理和钢筋检测。实验结果表明,所提网络的参数量仅为Darknet53网络的5%,在钢筋测试集上以106.8 FPS的速度达到了92.7%的mAP。与现有的EfficientDet、SSD、CenterNet、RetinaNet、Faster RCNN、YOLOv3、YOLOv4和YOLOv5m等8个目标检测网络相比,RebarNet具有更短的训练时间(24.5 s)、最低的显存占用(1956 MB)、最小的模型权重文件(13 MB)。与目前效果最好的YOLOv5m网络相比,RebarNet的mAP略低0.4个百分点,然而其检测速度上升了48 FPS,是YOLOv5m网络的1.8倍。以上结果表明,所提出的网络有助于完成智慧工地中要求实现的高效、准确的钢筋检测任务。 展开更多
关键词 钢筋检测 YOLOv3 注意力机制 特征金字塔 轻量级网络
在线阅读 下载PDF
一种基于MLP的高效高精度三维视线估计方法 被引量:2
15
作者 吴志豪 张德军 +1 位作者 吴亦奇 陈壹林 《计算机工程与科学》 CSCD 北大核心 2023年第11期1982-1990,共9页
随着卷积神经网络(CNN)在计算机视觉领域的广泛应用,以及大量三维视线数据集的公开,基于表观和深度学习相结合的三维视线估计研究受到越来越多的关注。由于CNN结构复杂,这类方法在实时性要求较高的应用场景中还有待进一步改进。近来兴... 随着卷积神经网络(CNN)在计算机视觉领域的广泛应用,以及大量三维视线数据集的公开,基于表观和深度学习相结合的三维视线估计研究受到越来越多的关注。由于CNN结构复杂,这类方法在实时性要求较高的应用场景中还有待进一步改进。近来兴起的研究表明,网络结构更为简单的多层感知机(MLP)模型能够取得与当前最佳CNN、Transformer模型相当的性能。受此启发,提出了一种基于MLP的高效高精度三维视线估计方法,利用MLP模型对双眼、人脸图像提取特征,之后融合推导出三维视线。实验结果表明,对MPIIFaceGaze数据集和EyeDiap数据集中包含的31位不同相貌的受试者,使用提出的方法UM-Net进行视线估计,视线估计精度比肩基于CNN的,并且在视线估计速度上具有明显优势,在实时性要求较高的领域也有较好的应用前景。 展开更多
关键词 三维视线估计 表观 多层感知机 实时性
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部