期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
集成特征注意力和残差连接的偏标签回归算法
1
作者 吴海峰 陶丽青 程玉胜 《计算机应用》 北大核心 2025年第8期2530-2536,共7页
偏标签回归(PLR)弥补了偏标签学习(PLL)仅聚焦于分类任务的局限。针对现有的PLR算法忽略实例特征的特性差异的问题,提出一种集成特征注意力和残差连接的偏标签回归算法(PLR-FARC)。首先,通过标签增强技术将真实数据集的标签扩充为一组... 偏标签回归(PLR)弥补了偏标签学习(PLL)仅聚焦于分类任务的局限。针对现有的PLR算法忽略实例特征的特性差异的问题,提出一种集成特征注意力和残差连接的偏标签回归算法(PLR-FARC)。首先,通过标签增强技术将真实数据集的标签扩充为一组实值候选标签;其次,借助注意力机制自动生成每个特征对标签的贡献度;再次,引入残差连接以减少特征在传递过程中的信息丢失,从而维持特征的完整性;最后,分别基于IDent(IDentification method)和PIDent(Progressive IDentification method)计算预测损失。在Abalone、Airfoil、Concrete、Cpu-act、Housing和Power-plant数据集上的实验结果表明,相较于IDent和PIDent,PLR-FARC的平均绝对误差(MAE)分别平均降低了2.15%、38.38%、8.86%、4.19%、15.71%和15.55%,均方误差(MSE)分别平均降低了9.35%、71.32%、23.10%、20.17%、27.22%和9.46%。可见,所提算法是可行且有效的。 展开更多
关键词 偏标签学习 偏标签回归 候选标签 注意力机制 残差连接
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部