期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于特征通道和空间位置注意力的三维点云特征学习网络 被引量:2
1
作者 吴亦奇 韩放 +2 位作者 张德军 何发智 陈壹林 《计算机工程与科学》 CSCD 北大核心 2022年第7期1239-1246,共8页
点云模型的分类与部件分割是三维点云数据处理的基本任务,其核心在于获取可以有效表示三维模型的点云特征。提出一个引入注意力机制的三维点云特征学习网络。该网络采用多层次点云特征提取方法,首先使用特征通道注意力模块获取各通道间... 点云模型的分类与部件分割是三维点云数据处理的基本任务,其核心在于获取可以有效表示三维模型的点云特征。提出一个引入注意力机制的三维点云特征学习网络。该网络采用多层次点云特征提取方法,首先使用特征通道注意力模块获取各通道间的关联,增强关键通道信息;接着引入空间位置注意力机制,基于点的空间位置信息获取各点的注意力权重;然后结合以上2种注意力机制获取增强的点云特征;最后基于该特征继续进行多层次特征提取,获得面向下游任务的点云特征。分别在ModelNet40和ShapeNet数据集上进行形状分类与部件分割实验,结果表明,使用所提方法可以实现高精度、具有鲁棒性的三维点云形状分类与分割。 展开更多
关键词 点云模型 注意力机制 形状分类 部件分割
在线阅读 下载PDF
一种基于自训练的众包标记噪声纠正算法 被引量:1
2
作者 杨艺 蒋良孝 李超群 《自动化学报》 EI CAS CSCD 北大核心 2023年第4期830-844,共15页
针对众包标记经过标记集成后仍然存在噪声的问题,提出了一种基于自训练的众包标记噪声纠正算法(Selftraining-based label noise correction,STLNC).STLNC整体分为3个阶段:第1阶段利用过滤器将带集成标记的众包数据集分为噪声集和干净集... 针对众包标记经过标记集成后仍然存在噪声的问题,提出了一种基于自训练的众包标记噪声纠正算法(Selftraining-based label noise correction,STLNC).STLNC整体分为3个阶段:第1阶段利用过滤器将带集成标记的众包数据集分为噪声集和干净集.第2阶段利用加权密度峰值聚类算法构建数据集中低密度实例指向高密度实例的空间结构关系.第3阶段首先根据发现的空间结构关系设计噪声实例选择策略;然后利用在干净集上训练的集成分类器对选择的噪声实例按照设计的实例纠正策略进行纠正,并将纠正后的实例加入到干净集,再重新训练集成分类器;重复实例选择与纠正过程直到噪声集中所有的实例被纠正;最后用最后一轮训练得到的集成分类器对所有实例进行纠正.在仿真标准数据集和真实众包数据集上的实验结果表明STLNC比其他5种最先进的噪声纠正算法在噪声比和模型质量两个度量指标上表现更优. 展开更多
关键词 众包学习 自训练 集成标记 标记噪声 噪声纠正
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部