期刊文献+
共找到1,065篇文章
< 1 2 54 >
每页显示 20 50 100
基于HHT提取昆明、下关重力固体潮的地震前兆信息 被引量:38
1
作者 周挚 山秀明 +3 位作者 张立 傅容珊 梁虹 全海燕 《地球物理学报》 SCIE EI CSCD 北大核心 2008年第3期836-844,共9页
在重力固体潮地震前兆分析中引入HHT时频分析新方法.结合HHT的优越性、固体潮的特点和地震的非平稳过程特性,设计重力固体潮地震前兆分析的瞬时频率特征参数;以相应理论计算值作为参照背景,研究固体潮的震前变化特征.昆明、下关的震例... 在重力固体潮地震前兆分析中引入HHT时频分析新方法.结合HHT的优越性、固体潮的特点和地震的非平稳过程特性,设计重力固体潮地震前兆分析的瞬时频率特征参数;以相应理论计算值作为参照背景,研究固体潮的震前变化特征.昆明、下关的震例分析表明,的确存在瞬时频率特征参数的震前变化,且具短期、同步正异常特征;瞬时频率特征参数具有明确的物理意义,其震前变化反映了地震非平稳过程对理论重力固体潮的影响. 展开更多
关键词 重力固体潮 HHT 瞬时频率 地震前兆
在线阅读 下载PDF
考虑多时间尺度退化信息的可解释性故障预测方法
2
作者 范林川 胡友强 +1 位作者 张可 刘成瑞 《宇航学报》 北大核心 2025年第2期272-281,共10页
在故障监测信号中,不同时间尺度的时间序列片段会呈现辨别性退化特征。为了全面捕捉这些差异化的多尺度退化信息,提出了多时间尺度趋势注意力卷积网络故障预测方法。该方法旨在聚焦关键信号,提取表征潜在故障的多尺度信息,实现精确的设... 在故障监测信号中,不同时间尺度的时间序列片段会呈现辨别性退化特征。为了全面捕捉这些差异化的多尺度退化信息,提出了多时间尺度趋势注意力卷积网络故障预测方法。该方法旨在聚焦关键信号,提取表征潜在故障的多尺度信息,实现精确的设备故障预测。可解释性分析实验揭示了该方法在故障预测过程中的部分逻辑过程。该网络通过趋势注意力机制提取信号趋势信息,以此计算不同信号的注意力权重;采用多时间尺度卷积核对加权多元时间序列进行特征提取与融合,将融合特征输入全卷积网络以提取深度退化特征,并预测故障剩余时间。在C-MAPSS涡扇发动机数据集上与先进模型进行对比实验,证实了本方法在故障预测任务中的有效性与先进性。 展开更多
关键词 故障预测 多时间尺度 卷积网络 可解释性
在线阅读 下载PDF
一种融合上下文语义信息与边缘特征的海陆分割方法
3
作者 文甜甜 普运伟 赵文翔 《自然资源遥感》 北大核心 2025年第5期62-72,共11页
由于在环境错综复杂、地物信息丰富的光学遥感图像中进行海陆分割时会出现定位精度低和边缘模糊的问题,因此文章提出一种融合上下文语义信息与边缘特征的深度卷积网络模型与海陆分割方法。首先利用FusionNet语义分割网络模块提取遥感图... 由于在环境错综复杂、地物信息丰富的光学遥感图像中进行海陆分割时会出现定位精度低和边缘模糊的问题,因此文章提出一种融合上下文语义信息与边缘特征的深度卷积网络模型与海陆分割方法。首先利用FusionNet语义分割网络模块提取遥感图像中丰富的目标语义信息;然后利用改进的空洞空间金字塔池化模块(atrous spatial pyramid pooling,ASPP)和上下文注意力模块从分割网络中提取不同尺度和层次的上下文语义特征,并构建边缘提取子网络获取多尺度边缘特征;最后通过融合模块对语义特征和边缘特征进行组合,实现海陆精准分割。在2个典型数据集上的测试结果表明,该文方法的整体预测正确率、F1分数以及边界F1分数分别达到了98.21%,97.64%,89.36%和96.09%,95.67%,86.13%,均显著优于其他对比模型。特别是在复杂背景下,该方法可有效提高分割和边缘检测的准确性,对人工岸线和港口的分割具有明显优势。 展开更多
关键词 海陆分割 边缘提取 语义分割 多任务学习 上下文注意力模块
在线阅读 下载PDF
自动化控制技术在磨矿分级中的应用 被引量:6
4
作者 邹金慧 高兰 黄宋魏 《数据采集与处理》 CSCD 北大核心 2008年第B09期131-135,共5页
介绍了一个集检测、控制及管理等功能于一体,应用于磨矿过程的控制系统。讨论了系统的组成结构、硬件配置、主要控制方法以及监控管理。实际运行结果表明,该系统检测参数全面、配置新颖、技术先进、质量可靠、操作方便,提高了企业的经... 介绍了一个集检测、控制及管理等功能于一体,应用于磨矿过程的控制系统。讨论了系统的组成结构、硬件配置、主要控制方法以及监控管理。实际运行结果表明,该系统检测参数全面、配置新颖、技术先进、质量可靠、操作方便,提高了企业的经济效益。 展开更多
关键词 磨矿分级 PLC 智能控制 监控管理
在线阅读 下载PDF
基于多路信息聚合协同解码的单通道语音增强 被引量:1
5
作者 莫尚斌 王文君 +2 位作者 董凌 高盛祥 余正涛 《计算机应用》 CSCD 北大核心 2024年第8期2611-2617,共7页
为了改善基于卷积编解码架构的单通道语音增强网络对语音声学特征提取不充分、解码特征丢失严重的问题,提出一种基于多路信息聚合协同解码的单通道语音增强网络MIACD,通过双路编码器充分提取融入了语音自监督学习(SSL)表征的幅度谱和复... 为了改善基于卷积编解码架构的单通道语音增强网络对语音声学特征提取不充分、解码特征丢失严重的问题,提出一种基于多路信息聚合协同解码的单通道语音增强网络MIACD,通过双路编码器充分提取融入了语音自监督学习(SSL)表征的幅度谱和复数谱特征,由4层Conformer分别从时间和频率维度对提取特征建模,采用残差连接将双路编码器提取的语音幅度、复数特征引入三路信息聚合解码器,并利用所提通道-时频注意力(CTF-Attention)机制根据语音能量分布情况调节解码器中聚合信息,有效缓解解码时可用声学信息缺失严重的问题。在公开数据集Voice Bank DEMAND上的实验结果表明,与用于单通道语音增强的协作学习框架(GaGNet)相比,MIACD在客观评价指标宽带感知评估语音质量(WB-PESQ)上提升了5.1%,短时客观可懂度(STOI)达到96.7%,验证所提方法可充分利用语音信息重构信号,有效抑制噪声并提升语音可理解性。 展开更多
关键词 声学特征 多路信息聚合 双路编码器 三路信息聚合解码器 通道-时频注意力机制
在线阅读 下载PDF
BRCNN与语义信息结合的跨领域方面词抽取
6
作者 王登雄 李卫疆 《小型微型计算机系统》 CSCD 北大核心 2024年第12期2936-2943,共8页
方面词抽取是方面级情感分析的关键步骤.当训练数据和测试数据来自同一领域时,用于该任务的现有方法已经可以得到令人满意的结果.然而,当训练数据与测试数据分别来源于不同领域时,这些方法呈现出的效果就急剧下降.为了解决这一缺乏可扩... 方面词抽取是方面级情感分析的关键步骤.当训练数据和测试数据来自同一领域时,用于该任务的现有方法已经可以得到令人满意的结果.然而,当训练数据与测试数据分别来源于不同领域时,这些方法呈现出的效果就急剧下降.为了解决这一缺乏可扩展性和鲁棒性的问题,本文提出了一种新的BRCNN方法结合语义信息来弥合源域与目标域的差距.该方法利用不同领域之间的语义相似性作为枢轴信息,从而降低了源域与目标域之间的差异性实现了方面词的跨领域抽取.同时,本文探究了BRCNN模型分别使用句法信息,语义信息,句法和语义信息相结合的知识结构作为枢轴信息弥合源域与目标域差距的性能比较,最终在基准数据集上展现出了比较好的性能. 展开更多
关键词 方面词抽取 领域适应 卷积神经网络 语义相似性
在线阅读 下载PDF
复杂山区环境下的应急无人机路径规划 被引量:2
7
作者 彭艺 唐剑 杨青青 《吉林大学学报(理学版)》 北大核心 2025年第2期585-594,共10页
针对复杂山区环境下应急通信无人机的飞行路径规划问题,通过综合考虑障碍物、无人机载重量、无人机电池容量等约束条件,为降低无人机的飞行时间并延长飞行距离,基于Harris鹰算法框架设计一种改进Harris鹰算法的无人机三维路径规划方法.... 针对复杂山区环境下应急通信无人机的飞行路径规划问题,通过综合考虑障碍物、无人机载重量、无人机电池容量等约束条件,为降低无人机的飞行时间并延长飞行距离,基于Harris鹰算法框架设计一种改进Harris鹰算法的无人机三维路径规划方法.首先,对Harris鹰的种群初始位置、位置更新方程和猎物的逃逸能量进行改进;其次,采用三次样条曲线插值法对路径进行平滑,以确保无人机飞行过程中安全可靠且平滑;最后,将应急无人机在具有不同障碍物的山区进行测试,并将所得结果与标准Harris鹰、蚁群算法和人工蜂群算法进行对比分析.分析结果表明,该算法所规划的三维路径规划方法生成的路径更短,并能更快地寻找到最优路径. 展开更多
关键词 路径规划 Harris鹰算法 无人机 最优路径
在线阅读 下载PDF
基于折射反向学习机制的樽海鞘群算法 被引量:1
8
作者 钱谦 翟豪 +2 位作者 潘家文 冯勇 李英娜 《小型微型计算机系统》 北大核心 2025年第1期119-127,共9页
由于樽海鞘群算法(SSA)容易陷入局部最优,导致算法收敛能力较差,为了提高算法的搜索性能,本文提出了一种基于折射反向学习的樽海鞘群算法rOSSA.算法根据折射反向学习在解空间中获得反向解,使搜索代理获得更多选择机会,增加算法找到更优... 由于樽海鞘群算法(SSA)容易陷入局部最优,导致算法收敛能力较差,为了提高算法的搜索性能,本文提出了一种基于折射反向学习的樽海鞘群算法rOSSA.算法根据折射反向学习在解空间中获得反向解,使搜索代理获得更多选择机会,增加算法找到更优解的可能性.此外,在折射反向学习中引入概率扰动机制,通过概率扰动机制使搜索代理在迭代后期能够跳出局部最优,从而增强算法的全局搜索能力.最后,通过9个单峰、多峰、复合测试函数和一个工程计算问题将rOSSA与近年提出的一些主流算法进行比较,实验结果有效证明了本文改进算法的有效性. 展开更多
关键词 樽海鞘群算法 搜索性能 折射反向学习 概率扰动
在线阅读 下载PDF
YOLO-LDD:轻量级无人机检测算法 被引量:1
9
作者 邵剑飞 蔡世军 刘杰 《吉林大学学报(理学版)》 北大核心 2025年第3期867-877,共11页
针对在无人机目标检测中现有检测算法模型过大、速度较慢、复杂度过高等问题,提出一种基于YOLOv5n的改进型轻量级无人机检测算法YOLO-LDD.首先,在YOLOv5n基础上引入多样化分支模块DBB和C3模块融合重构为C3_DBB模块,增强单个卷积的表征能... 针对在无人机目标检测中现有检测算法模型过大、速度较慢、复杂度过高等问题,提出一种基于YOLOv5n的改进型轻量级无人机检测算法YOLO-LDD.首先,在YOLOv5n基础上引入多样化分支模块DBB和C3模块融合重构为C3_DBB模块,增强单个卷积的表征能力;其次,在颈部网络中引入重参数化结构卷积RepConv,提升检测速度;最后,通过层自适应幅度剪枝(LAMP)方法压缩模型,减少参数数量.实验结果表明,该算法可在保持良好检测性能的同时,降低计算和存储需求,并提高模型的效率和推理速度,平均精度达96.7%,参数量较YOLOv5n压缩73%,运算量减少60%,检测速度提升至原来的1.6倍. 展开更多
关键词 无人机 目标检测 YOLOv5n算法 轻量级 深度学习
在线阅读 下载PDF
三维人体姿态估计中的多尺度时空特征融合
10
作者 张宇 刘骊 +2 位作者 付晓东 刘利军 彭玮 《计算机辅助设计与图形学学报》 北大核心 2025年第1期75-88,共14页
针对视频输入的单人三维人体姿态估计中表征不精确、融合不充分、结果不平滑的问题,提出三维人体姿态估计的多尺度时空特征融合方法.首先在空域定义关节点、肢体和上/下身人体标记并通过位置嵌入表示人体的空间多尺度特征;然后结合自注... 针对视频输入的单人三维人体姿态估计中表征不精确、融合不充分、结果不平滑的问题,提出三维人体姿态估计的多尺度时空特征融合方法.首先在空域定义关节点、肢体和上/下身人体标记并通过位置嵌入表示人体的空间多尺度特征;然后结合自注意力机制和多层感知机构建空间多尺度特征融合模块,融合关节点、肢体和上/下身三个空间多尺度特征,得到初步姿态特征序列;最后建立时序多尺度编码进行时序特征融合获得最终姿态特征序列,并通过时序解码,优化生成细化的三维人体姿态.在Human3.6M数据集上的实验结果表明,所提方法的平均每关节位置P-MPJPE和速度误差MPJVE分别为33.6和2.4,较对比方法降低了2.3%和4.0%,能够降低计算复杂度,提高三维人体姿态估计精度,生成准确、平滑的三维人体姿态估计结果.此外,在HumanEva-I数据集的测试结果表明,所提方法也具有一定的泛化性. 展开更多
关键词 三维人体姿态估计 多尺度特征 自注意力机制 时空特征融合 时序编码
在线阅读 下载PDF
基于深度特征局部重采样融合的多种类水稻种子识别
11
作者 张长胜 李得恺 +3 位作者 杨忠义 王蒙 张付杰 张庭源 《农业机械学报》 北大核心 2025年第7期522-531,共10页
针对多种类水稻种子识别过程中,形态特征较多、分类难度较大的问题,本文提出了一种基于深度特征局部重采样融合(Depth feature local resampling fusion,DFLRF)的分类网络,对36种水稻种子进行分类识别。首先,该方法使用ConvNeXt作为骨... 针对多种类水稻种子识别过程中,形态特征较多、分类难度较大的问题,本文提出了一种基于深度特征局部重采样融合(Depth feature local resampling fusion,DFLRF)的分类网络,对36种水稻种子进行分类识别。首先,该方法使用ConvNeXt作为骨干网络提取水稻种子特征;其次,采用特征强化注意力模块(Feature intensification attention module,FIAM)构造全局特征采集分支,使用多通道卷积局部重采样模块(Multi-channel convolutional local resampling module,MCLRM)和FIAM构建局部特征采集分支;最后,将输出的全局特征和局部特征进行融合,在CosFace损失约束下准确识别出具有近似特征的不同种类水稻种子。本研究使用自采数据集,实验得出,新模型ConvNeXtDFLRF总体准确率达到86.90%,较基础模型提高5.88个百分点,与InceptionResNetV2和EfficientNetV2等主流模型相比,总体识别准确率提升2.92~8.80个百分点,整体识别效果最优。本文所提出模型能够有效地对36种水稻种子进行分类,为多种类水稻种子分类识别的研究提供了一种新颖且有效的方法。 展开更多
关键词 水稻种子分类 多种类 深度特征 局部重采样 特征融合
在线阅读 下载PDF
融入实体翻译的汉越神经机器翻译模型
12
作者 高盛祥 侯哲 +1 位作者 余正涛 赖华 《计算机应用》 北大核心 2025年第1期69-74,共6页
在汉越低资源翻译任务中,句子中的实体词准确翻译是一大难点。针对实体词在训练语料中出现的频率较低,模型无法构建双语实体词之间的映射关系等问题,构建一种融入实体翻译的汉越神经机器翻译模型。首先,通过汉越实体双语词典预先获取源... 在汉越低资源翻译任务中,句子中的实体词准确翻译是一大难点。针对实体词在训练语料中出现的频率较低,模型无法构建双语实体词之间的映射关系等问题,构建一种融入实体翻译的汉越神经机器翻译模型。首先,通过汉越实体双语词典预先获取源句中实体词的翻译结果;其次,将结果拼接在源句末端作为模型的输入,同时在编码端引入“约束提示信息”增强表征;最后,在解码端融入指针网络机制,以确保模型能复制输出源端句的词汇。实验结果表明,该模型相较于跨语言模型XLM-R(Cross-lingual Language Model-RoBERTa)的双语评估替补(BLEU)值在汉越方向提升了1.37,越汉方向提升了0.21,时间性能上相较于Transformer该模型在汉越方向和越汉方向分别缩短3.19%和3.50%,可有效地提升句子中实体词翻译的综合性能。 展开更多
关键词 汉越神经机器翻译 实体翻译 双语词典 指针网络 低资源
在线阅读 下载PDF
基于优化MobileViT模型的轻量化田间杂草识别
13
作者 李亚 陈晓东 +1 位作者 王海瑞 朱贵富 《华中农业大学学报》 北大核心 2025年第4期192-203,共12页
针对农业环境中杂草与作物幼苗的识别挑战,提出一种基于优化MobileViT模型的轻量化识别方法。首先引入SimAM注意力机制,增强模型对特征的注意力能力,使用SCConv卷积模块减少卷积神经网络中特征的空间和通道冗余来降低计算成本和模型存储... 针对农业环境中杂草与作物幼苗的识别挑战,提出一种基于优化MobileViT模型的轻量化识别方法。首先引入SimAM注意力机制,增强模型对特征的注意力能力,使用SCConv卷积模块减少卷积神经网络中特征的空间和通道冗余来降低计算成本和模型存储,同时提高卷积模块性能;提出联合使用Label Smoothing Loss和Cross Entropy Loss的损失函数策略,提升模型的泛化性能,降低过拟合风险,并加速模型的收敛过程。选取12种田间常见作物幼苗与杂草图像作为训练数据集评估改进模型MobileViT-SS的性能,结果显示,改进模型的平均识别准确率、精确度、召回率、F_1分数分别达到95.91%、95.97%、95.46%、95.69%,均优于当前广泛使用的深度神经网络模型VGG-16、ResNet-18和MobileNetv3。结果表明,改进模型MobileViT-SS能够精准、快速区分多种形态相似的杂草与作物幼苗。 展开更多
关键词 作物幼苗 杂草识别 智能农业 MobileViT 轻量化 SimAM注意力
在线阅读 下载PDF
基于EDW-YOLOv8的棉花叶片病害检测
14
作者 李亚 蒋晨 +2 位作者 王海瑞 朱贵富 胡灿 《华中农业大学学报》 北大核心 2025年第5期189-197,共9页
为解决复杂自然环境背景下棉花叶片病害检测准确率低的问题,提出一种基于改进YOLOv8n的棉花叶片病害检测模型。首先在YOLOv8n的骨干网络处加入EMA注意力机制,同时在骨干网络中的C2f模块中加入可变形卷积Deformable ConvNets v2模块,扩... 为解决复杂自然环境背景下棉花叶片病害检测准确率低的问题,提出一种基于改进YOLOv8n的棉花叶片病害检测模型。首先在YOLOv8n的骨干网络处加入EMA注意力机制,同时在骨干网络中的C2f模块中加入可变形卷积Deformable ConvNets v2模块,扩大感受野以加强特征提取能力。在此基础上,将损失函数CIoU替换为具有动态聚焦机制的边界框回归损失WIoU,以加快模型收敛速度,进一步提升模型性能。试验结果显示,改进后的EDW-YOLOv8模型准确率、召回率和平均精度相较于YOLOv8n分别提升了4.3、7.5和4.6百分点。结果表明,研究所提出的模型具有良好的泛化性,可以准确高效地检测出图像中棉花叶片病害目标。 展开更多
关键词 棉花叶片病害 YOLOv8 注意力机制 可变形卷积 损失函数
在线阅读 下载PDF
联合局部线性嵌入与深度强化学习的RIS-MISO下行和速率优化
15
作者 孙俊 杨俊龙 +2 位作者 杨青青 胡明志 吴紫仪 《电子与信息学报》 北大核心 2025年第7期2117-2126,共10页
智能反射面(RIS)因其能调节电磁波的相位和幅度,被视为下一代无线通信的关键技术而被广泛研究。在RIS辅助多输入单输出(MISO)的通信系统中,信道状态维度随用户数量的增加呈平方级增长,导致深度强化学习(DRL)智能体在高维状态空间下面临... 智能反射面(RIS)因其能调节电磁波的相位和幅度,被视为下一代无线通信的关键技术而被广泛研究。在RIS辅助多输入单输出(MISO)的通信系统中,信道状态维度随用户数量的增加呈平方级增长,导致深度强化学习(DRL)智能体在高维状态空间下面临训练开销大的挑战。针对此问题,该文提出一种基于局部线性嵌入(LLE)和软动作评论(SAC)的联合优化算法,通过随机搜索算法和LLE对信道状态进行降维,并将低维状态作为SAC算法的输入,联合优化基站波束成形与RIS相位偏移,最大化MISO系统的下行和速率。仿真结果表明,在用户数为40的场景下,所提算法在维持与SAC相当的和速率性能的同时,训练时间减少了18.3%,计算资源消耗降低了64.8%。且随着用户规模的扩大,算法的训练开销进一步下降,充分验证了其有效性。 展开更多
关键词 智能反射面 局部线性嵌入 深度强化学习 和速率 训练开销
在线阅读 下载PDF
基于多特征融合与集成学习的风机叶片缺陷检测方法
16
作者 王瑞 汤占军 《计算机科学》 北大核心 2025年第S1期458-465,共8页
针对无人机在风机叶片表面缺陷检测中遇到的复杂特征处理和多形式缺陷表现不佳的问题,提出了一种基于多特征融合与集成学习的风机叶片缺陷检测方法。该方法通过提取局部LBP特征、HOG特征以及胶囊网络的高级特征,并将其进行有效融合,构... 针对无人机在风机叶片表面缺陷检测中遇到的复杂特征处理和多形式缺陷表现不佳的问题,提出了一种基于多特征融合与集成学习的风机叶片缺陷检测方法。该方法通过提取局部LBP特征、HOG特征以及胶囊网络的高级特征,并将其进行有效融合,构建了一个多特征提取模型,以获取更深入的细节信息。同时,选择了3种具有不同偏差和方差特性的基础分类器——支持向量机(SVM)、k近邻算法(KNN)和决策树(DT),通过整合不同基模型的优势,建立异质集成学习模型,从而提升了模型的整体性能。在风机叶片表面缺陷图像数据集上对模型(MFEM)进行了验证,实验结果表明,该方法的平均精确度(MAP)最高达到98%,相比于YOLOv7和Faster R-CNN分别提高了3.1%和5.8%,对比SVM,KNN和DT 3类基模型有较大提升。此外,通过消融实验对不同模块的有效性进行了验证。实验结果表明,提出的多特征融合与集成学习模型(MFEM)在风机叶片缺陷检测任务中表现出了优良的性能。 展开更多
关键词 无人机 风机叶片 缺陷检测 多特征融合 集成学习 胶囊网络
在线阅读 下载PDF
感知辅助和原子选择门限机制下的MIMO-OTFS系统信道估计
17
作者 彭艺 陈志翔 杨青青 《电波科学学报》 北大核心 2025年第1期155-163,共9页
针对多输入多输出正交时频空间(multiple-input multiple-output orthogonal time frequency space,MIMO-OTFS)系统由最大时延、多普勒扩展、天线数量增加带来信道估计计算开销大、准确率下降的问题,提出了一种基于感知辅助和原子选择... 针对多输入多输出正交时频空间(multiple-input multiple-output orthogonal time frequency space,MIMO-OTFS)系统由最大时延、多普勒扩展、天线数量增加带来信道估计计算开销大、准确率下降的问题,提出了一种基于感知辅助和原子选择门限的广义正交匹配追踪(sensing aided generalized orthogonal matching pursuit algorithm based on atomic threshold,SA-TGOMP)信道估计算法。该算法首先将雷达探测的用户和周围环境信息转化为OTFS信道的初始索引集,然后引入以固定值选取相关性原子进行迭代的策略和原子选择门限进行支撑集更新。实验结果表明,本文算法能够有效提高信道估计精度的同时减少导频开销。 展开更多
关键词 多输入多输出正交时频空间(MIMO-OTFS) 压缩感知 感知辅助 信道估计
在线阅读 下载PDF
改进HHO算法优化的BPNN模型在管道腐蚀速率预测中的应用
18
作者 线岩团 苗育华 +1 位作者 相艳 郭军军 《安全与环境学报》 北大核心 2025年第11期4222-4231,共10页
油气管道在运行过程中常会出现腐蚀问题,建立合理的模型并准确预测管道的腐蚀速率具有重要的现实意义。针对传统BP神经网络模型的不足,采用新型Sine混沌映射对哈里斯鹰优化(Harris Hawk Optimization,HHO)算法进行改进,建立了基于改进... 油气管道在运行过程中常会出现腐蚀问题,建立合理的模型并准确预测管道的腐蚀速率具有重要的现实意义。针对传统BP神经网络模型的不足,采用新型Sine混沌映射对哈里斯鹰优化(Harris Hawk Optimization,HHO)算法进行改进,建立了基于改进哈里斯鹰优化算法的优化BP神经网络(Improved Harris Hawk Optimization-Back Propagation Neural Network,IHHO-BPNN)模型,并对比分析了IHHO-BPNN模型、HHO-BPNN模型及传统BPNN模型对管道腐蚀速率的预测精度。输油管道腐蚀速率的预测结果表明,IHHO-BPNN模型的平均绝对百分比误差和均方根误差分别为1.473%和0.001,HHO-BPNN模型的平均绝对百分比误差和均方根误差分别为4.647%和0.004,而传统BPNN模型的预测精度较差;南海油田管道腐蚀速率的预测结果表明,IHHO-BPNN模型的平均绝对百分比误差和均方根误差均低于HHO-BPNN模型和传统BPNN模型;混沌映射的引入改善了种群的多样性并可以更好地探索寻优空间,有助于提高HHO-BPNN模型的预测精度。 展开更多
关键词 安全工程 管道腐蚀速率 哈里斯鹰优化算法 混沌映射 BP神经网络 模型精度
在线阅读 下载PDF
基于深度学习的癫痫异常信号检测和分类模型
19
作者 王剑 成婷 +1 位作者 宋政阳 张一丁 《电子测量技术》 北大核心 2025年第17期113-124,共12页
癫痫是一种常见的神经系统疾病,其诊断主要依赖于脑电信号的分析。近年来,基于深度学习的方法在癫痫检测中得到了广泛应用,但这些方法通常依赖于单一的特征提取技术,且大多忽略了EEG信号的空间域特征。为了捕捉EEG信号的空域特征,研究... 癫痫是一种常见的神经系统疾病,其诊断主要依赖于脑电信号的分析。近年来,基于深度学习的方法在癫痫检测中得到了广泛应用,但这些方法通常依赖于单一的特征提取技术,且大多忽略了EEG信号的空间域特征。为了捕捉EEG信号的空域特征,研究人员尝试引入EEG的图表示,并结合图神经网络模型进行建模。然而,现有方法的图表示通常需要每个顶点遍历所有其他顶点来构建图结构,导致较高的时间复杂度,难以满足临床实时诊断的需求。针对上述挑战,首先提出了核心邻域图结构,在此基础上,进一步提出了基于双视图输入的癫痫自动检测和分类框架——DV-SeizureNet。该框架能够同时学习EEG信号的时域、频域和空域特征,实现癫痫异常检测和发作分类。在TUSZ数据集上的实验表明,DV-SeizureNet在癫痫检测任务中达到91.4%的准确率,优于现有最先进方法2.1%。在分类任务中,模型对4种癫痫发作类型的平均分类准确率为82.8%,F1-score为81.2%。DV-SeizureNet通过双视图学习框架,全面提取并融合EEG信号的时空频域特征,在癫痫异常检测和发作分类任务中表现优越,为临床诊断提供了可靠的辅助工具。 展开更多
关键词 癫痫检测 深度学习 EEG信号 双视图学习 图卷积神经网络 多尺度特征融合
在线阅读 下载PDF
基于混合卷积-递归神经网络的共享单车出入流预测
20
作者 贾现广 刘欢 +1 位作者 冯超琴 吕英英 《科学技术与工程》 北大核心 2025年第5期2127-2134,共8页
准确预测共享单车流量有助于优化共享单车的供需平衡,提高城市居民的出行便利性。为解决共享单车预测准确性不高以及时空特性捕捉不充分的问题,提出了一种混合卷积-递归神经网络(hybrid convolutional-recurrent neural network)Conv3D-... 准确预测共享单车流量有助于优化共享单车的供需平衡,提高城市居民的出行便利性。为解决共享单车预测准确性不高以及时空特性捕捉不充分的问题,提出了一种混合卷积-递归神经网络(hybrid convolutional-recurrent neural network)Conv3D-GRU模型,采用芝加哥2022全年共享单车数据进行实验,并与三维卷积神经网络3D-CNN(3D convolutional neural network)模型和卷积长短期记忆网络(Convolutional long short-term memory,ConvLSTM)的预测结果进行比较,使用均方根误差(root mean squared error,RMSE)、平均绝对误差(mean absolute error,MAE)、决定系数R^(2)评估模型性能。实验结果表明,Conv3D-GRU相较于3D-CNN和ConvLSTM模型,在RMSE、MAE以及R^(2)上分别提高了3.25%、4.90%、1.14%和11.94%、13.70%、2.46%,可见Conv3D-GRU模型的预测误差小,预测精度高,能够有效和可靠地适用于共享单车出入流的预测。 展开更多
关键词 城市交通 出入流预测 Conv3D-GRU 共享单车 时空特性
在线阅读 下载PDF
上一页 1 2 54 下一页 到第
使用帮助 返回顶部