针对滚动轴承传统故障诊断方法需要先验知识以及人工提取特征导致故障识别错误率高的问题,提出一种基于广义S变换(Generalized S transform,GST)和改进卷积神经网络(Convolutional Neural Network,CNN)的滚动轴承智能故障诊断方法。使用...针对滚动轴承传统故障诊断方法需要先验知识以及人工提取特征导致故障识别错误率高的问题,提出一种基于广义S变换(Generalized S transform,GST)和改进卷积神经网络(Convolutional Neural Network,CNN)的滚动轴承智能故障诊断方法。使用GST将一维振动信号转换为特征信息更加丰富的时频图,更加全面提取滚动轴承的故障特征信息。通过加入弹性斜率和高斯分布的神经元噪声,提出改进的激活函数EReLTanh(Elastic Rectified Linear Tanh,EReLTanh),并基于EReLTanh激活函数构建CNN。将得到的时频图进行压缩和归一化处理,生成时频图数据集并划分数据集。利用时频图数据集训练改进CNN,实现滚动轴承的智能故障诊断。使用自制实验平台采集不同种类滚动轴承故障数据,利用t-SNE进行全连接层特征降维可视化,结果表明:使用EReLTanh激活函数的CNN模型能够将不同故障样本的特征进行准确的分类,达到故障识别要求,同时使用该数据利用S变换、小波变换、GST并结合改进CNN和未改进CNN进行对比,提出的方法准确率得到提升。通过分析和对比实验可得出结论,利用GST和改进CNN的滚动轴承智能故障诊断方法能够在实际工程中更加简单方便地判断出故障类型及损伤程度,满足实际工程的需求。展开更多
为探究不同品位矿石在半自磨机干、湿磨情况下的能量利用规律,基于离散元法(discrete element method,DEM)与计算流体力学(computational fluid dynamic,CFD)建立了湿式半自磨过程耦合仿真模型,并对比分析了不同品位矿石在干、湿磨情况...为探究不同品位矿石在半自磨机干、湿磨情况下的能量利用规律,基于离散元法(discrete element method,DEM)与计算流体力学(computational fluid dynamic,CFD)建立了湿式半自磨过程耦合仿真模型,并对比分析了不同品位矿石在干、湿磨情况下的运动状态与碰撞能量分布。研究结果表明:在30%、35%和40%矿石品位下,湿式和干式半自磨过程切向和法向能量利用率均随品位升高呈下降趋势。由于存在液体介质,湿式半自磨颗粒间磨剥作用减弱,冲击力传递效应增强,在30%、35%和40%矿石品位下,切向能量利用率较干式半自磨能量利用率分别降低2.30%、2.87%和3.51%,而法向能量利用率较干式半自磨能量利用率分别提高2.08%、2.42%和2.68%。本文揭示了矿石品位、液体介质与矿石能量利用率的作用机理,为半自磨生产过程工艺优化和节能降耗提供理论依据。展开更多
文摘针对滚动轴承传统故障诊断方法需要先验知识以及人工提取特征导致故障识别错误率高的问题,提出一种基于广义S变换(Generalized S transform,GST)和改进卷积神经网络(Convolutional Neural Network,CNN)的滚动轴承智能故障诊断方法。使用GST将一维振动信号转换为特征信息更加丰富的时频图,更加全面提取滚动轴承的故障特征信息。通过加入弹性斜率和高斯分布的神经元噪声,提出改进的激活函数EReLTanh(Elastic Rectified Linear Tanh,EReLTanh),并基于EReLTanh激活函数构建CNN。将得到的时频图进行压缩和归一化处理,生成时频图数据集并划分数据集。利用时频图数据集训练改进CNN,实现滚动轴承的智能故障诊断。使用自制实验平台采集不同种类滚动轴承故障数据,利用t-SNE进行全连接层特征降维可视化,结果表明:使用EReLTanh激活函数的CNN模型能够将不同故障样本的特征进行准确的分类,达到故障识别要求,同时使用该数据利用S变换、小波变换、GST并结合改进CNN和未改进CNN进行对比,提出的方法准确率得到提升。通过分析和对比实验可得出结论,利用GST和改进CNN的滚动轴承智能故障诊断方法能够在实际工程中更加简单方便地判断出故障类型及损伤程度,满足实际工程的需求。
文摘为探究不同品位矿石在半自磨机干、湿磨情况下的能量利用规律,基于离散元法(discrete element method,DEM)与计算流体力学(computational fluid dynamic,CFD)建立了湿式半自磨过程耦合仿真模型,并对比分析了不同品位矿石在干、湿磨情况下的运动状态与碰撞能量分布。研究结果表明:在30%、35%和40%矿石品位下,湿式和干式半自磨过程切向和法向能量利用率均随品位升高呈下降趋势。由于存在液体介质,湿式半自磨颗粒间磨剥作用减弱,冲击力传递效应增强,在30%、35%和40%矿石品位下,切向能量利用率较干式半自磨能量利用率分别降低2.30%、2.87%和3.51%,而法向能量利用率较干式半自磨能量利用率分别提高2.08%、2.42%和2.68%。本文揭示了矿石品位、液体介质与矿石能量利用率的作用机理,为半自磨生产过程工艺优化和节能降耗提供理论依据。