期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Transformer模型的问句语义相似度计算 被引量:7
1
作者 丁邱 迟海洋 +2 位作者 严馨 徐广义 邓忠莹 《计算机工程与设计》 北大核心 2023年第3期887-893,共7页
针对现有方法准确率不高、不能充分捕捉句子深层次语义特征的问题,提出一种基于Transformer编码器网络的问句相似度计算方法。在获取句子语义特征前引入交互注意力机制比较句子间词粒度的相似性,通过注意力矩阵和句子矩阵相互生成彼此... 针对现有方法准确率不高、不能充分捕捉句子深层次语义特征的问题,提出一种基于Transformer编码器网络的问句相似度计算方法。在获取句子语义特征前引入交互注意力机制比较句子间词粒度的相似性,通过注意力矩阵和句子矩阵相互生成彼此注意力加权后的新的句子表示矩阵,将获取的新矩阵同原始矩阵拼接融合,丰富句子特征信息;将拼接后的句子特征矩阵作为Transformer编码器网络的输入,由Transformer编码器分别对其进行深层次语义编码,获得句子的全局语义特征;通过全连接网络和Softmax函数对特征进行权重调整,得到句子相似度。在中文医疗健康问句数据集上模型取得了90.2%的正确率,较对比模型提升了将近4.2%,验证了该方法可以有效提高句子的语义表示能力和语义相似度的准确性。 展开更多
关键词 自然语言处理 Transformer编码器 交互注意力机制 特征融合 语义相似度 语义编码 句子表示
在线阅读 下载PDF
基于HMM的多维数据下扶贫对象状态预测 被引量:3
2
作者 何俊 洪孙焱 +2 位作者 周义方 申时凯 邹目权 《系统仿真学报》 CAS CSCD 北大核心 2022年第5期1118-1126,共9页
针对扶贫领域中贫困、脱贫和返贫状态预测不准确,影响状态变迁的关键因素难以识别的问题,从扶贫基础数据和多个行业数据中提取8个关键特征和22个观测状态,构建观察状态和隐含状态关联关系,建立扶贫对象状态预测隐马尔可夫模型(hidden ma... 针对扶贫领域中贫困、脱贫和返贫状态预测不准确,影响状态变迁的关键因素难以识别的问题,从扶贫基础数据和多个行业数据中提取8个关键特征和22个观测状态,构建观察状态和隐含状态关联关系,建立扶贫对象状态预测隐马尔可夫模型(hidden markov model,HMM)。以某深度贫困县连续3年的数据为样本,进行参数训练、测试实验和结果验证,结果表明该方法对返贫、贫困和脱贫状态有较强的预测能力,误差率较低,且能准确识别出影响返贫的关键要素。该方法对指导精准扶贫工作具有非常重要的实际意义。 展开更多
关键词 隐马尔可夫模型 精准扶贫 数据分析 预测方法 返贫
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部