期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
SG-UNet:基于全局注意力和自校准卷积增强的黑色素瘤分割模型
1
作者
计寰宇
王蕊
+1 位作者
高盛祥
车文刚
《南方医科大学学报》
北大核心
2025年第6期1317-1326,共10页
目的 提出了一种新的黑色素瘤分割模型SG-UNet,以提高黑色素瘤皮肤镜图像的精确分割。通过分割后边界特征评估,可以更准确地识别诊断黑色素瘤从而辅助早期诊断。方法 使用一种U形结构的卷积神经网络UNet,对其主干、跳跃连接和下采样池...
目的 提出了一种新的黑色素瘤分割模型SG-UNet,以提高黑色素瘤皮肤镜图像的精确分割。通过分割后边界特征评估,可以更准确地识别诊断黑色素瘤从而辅助早期诊断。方法 使用一种U形结构的卷积神经网络UNet,对其主干、跳跃连接和下采样池化部分进行改进。在主干部分,我们将UNet的下采样部分参考Vgg的结构将卷积数量由10个增加到13个加深网络层次来捕获更加精细的特征表示。为了进一步提升特征提取和细节识别的能力,主干部分将传统的卷积替换为自校准卷积增强模型对空间维度和通道维度特征的捕获能力。同时,在池化部分将哈尔小波下采样替换原有的池化层实现更有效的多尺度特征融合,并降低特征图的空间分辨率。接着将全局注意力机制融入到每一层的跳跃连接中更好地理解图像的上下文信息。结果实验结果表明SG-UNet在ISIC 2017和ISIC 2018数据集上的分割效果对比目前其他先进分割模型得到明显提升。在ISIC2017和ISIC 2018数据集上Dice,IoU分别达到了92.41%,86.62%和92.31%,86.48%。结论 实验结果证实,所提出的方法能够有效实现黑色素瘤的精确分割。
展开更多
关键词
图像分割
全局注意力机制
黑色素瘤
UNet
自校准卷积
哈尔小波下采样
SG-UNet
在线阅读
下载PDF
职称材料
基于Stacking集成算法的中国南方地区粮食产量预测
2
作者
马滇璟
赵家松
+3 位作者
严伟榆
段光俊
刘振洋
吴绍天
《湖北农业科学》
2025年第5期155-159,184,共6页
基于中国南方地区1998—2022年安徽省、湖北省、湖南省、江苏省和四川省的粮食产量及11个维度的相关因素数据,构建基于Stacking集成算法的BP-SVR-Stacking粮食产量预测模型,并将其与BP神经网络模型和SVR模型进行对比分析。结果表明,BP-S...
基于中国南方地区1998—2022年安徽省、湖北省、湖南省、江苏省和四川省的粮食产量及11个维度的相关因素数据,构建基于Stacking集成算法的BP-SVR-Stacking粮食产量预测模型,并将其与BP神经网络模型和SVR模型进行对比分析。结果表明,BP-SVR-Stacking模型的平均绝对误差(MAE)和平均绝对百分比误差(MAPE)均低于BP神经网络模型和SVR模型,说明BP-SVR-Stacking模型的预测能力优于单一的机器学习模型。相较于BP神经网络模型和SVR模型,BP-SVR-Stacking模型的决定系数(R^(2))分别提高了0.124和0.122,说明BP-SVR-Stacking模型具有良好的拟合能力和预测性能。
展开更多
关键词
Stacking集成算法
粮食产量
中国南方
预测
在线阅读
下载PDF
职称材料
题名
SG-UNet:基于全局注意力和自校准卷积增强的黑色素瘤分割模型
1
作者
计寰宇
王蕊
高盛祥
车文刚
机构
昆明
理工大学信息
工程
与自动化
学院
昆明城市学院数据科学与工程学院
昆明
理工大学云南省计算机技术应用重点实验室
昆明
理工大学云南省人工智能重点实验室
出处
《南方医科大学学报》
北大核心
2025年第6期1317-1326,共10页
基金
国家自然科学基金(U23A20388,U21B2027)
云南省重点研发计划(202303AP140008,202401BC070021,202302AD080003)
+1 种基金
云南省基础研究项目(202301AT070393)
昆明理工大学“双一流”科技专项(202402AG050007)。
文摘
目的 提出了一种新的黑色素瘤分割模型SG-UNet,以提高黑色素瘤皮肤镜图像的精确分割。通过分割后边界特征评估,可以更准确地识别诊断黑色素瘤从而辅助早期诊断。方法 使用一种U形结构的卷积神经网络UNet,对其主干、跳跃连接和下采样池化部分进行改进。在主干部分,我们将UNet的下采样部分参考Vgg的结构将卷积数量由10个增加到13个加深网络层次来捕获更加精细的特征表示。为了进一步提升特征提取和细节识别的能力,主干部分将传统的卷积替换为自校准卷积增强模型对空间维度和通道维度特征的捕获能力。同时,在池化部分将哈尔小波下采样替换原有的池化层实现更有效的多尺度特征融合,并降低特征图的空间分辨率。接着将全局注意力机制融入到每一层的跳跃连接中更好地理解图像的上下文信息。结果实验结果表明SG-UNet在ISIC 2017和ISIC 2018数据集上的分割效果对比目前其他先进分割模型得到明显提升。在ISIC2017和ISIC 2018数据集上Dice,IoU分别达到了92.41%,86.62%和92.31%,86.48%。结论 实验结果证实,所提出的方法能够有效实现黑色素瘤的精确分割。
关键词
图像分割
全局注意力机制
黑色素瘤
UNet
自校准卷积
哈尔小波下采样
SG-UNet
Keywords
image segmentation
global attention mechanism
melanoma
UNet
self-calibrated convolution
Haar wavelet downsampling
SG-UNet
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于Stacking集成算法的中国南方地区粮食产量预测
2
作者
马滇璟
赵家松
严伟榆
段光俊
刘振洋
吴绍天
机构
云南农业大学大
数据
学院
昆明城市学院数据科学与工程学院
出处
《湖北农业科学》
2025年第5期155-159,184,共6页
基金
云南省农业基础研究联合专项基金资助项目(202301BD070001-202)
云南农业大学博士科研启动基金资助项目(A2032002507)。
文摘
基于中国南方地区1998—2022年安徽省、湖北省、湖南省、江苏省和四川省的粮食产量及11个维度的相关因素数据,构建基于Stacking集成算法的BP-SVR-Stacking粮食产量预测模型,并将其与BP神经网络模型和SVR模型进行对比分析。结果表明,BP-SVR-Stacking模型的平均绝对误差(MAE)和平均绝对百分比误差(MAPE)均低于BP神经网络模型和SVR模型,说明BP-SVR-Stacking模型的预测能力优于单一的机器学习模型。相较于BP神经网络模型和SVR模型,BP-SVR-Stacking模型的决定系数(R^(2))分别提高了0.124和0.122,说明BP-SVR-Stacking模型具有良好的拟合能力和预测性能。
关键词
Stacking集成算法
粮食产量
中国南方
预测
Keywords
Stacking ensemble algorithm
grain yield
southern China
prediction
分类号
F326.11 [经济管理—产业经济]
S126 [农业科学—农业基础科学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
SG-UNet:基于全局注意力和自校准卷积增强的黑色素瘤分割模型
计寰宇
王蕊
高盛祥
车文刚
《南方医科大学学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
2
基于Stacking集成算法的中国南方地区粮食产量预测
马滇璟
赵家松
严伟榆
段光俊
刘振洋
吴绍天
《湖北农业科学》
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部