传统Cuk均衡控制策略能量转移效率低,为维持电池组SOC(State of Charge)一致,文章提出了一种新型控制策略,保证了电池组的控流均衡。根据电池组的能量分布,该均衡控制策略能够实现对均衡器开关、均衡电流方向和大小的控制,提高了整体的...传统Cuk均衡控制策略能量转移效率低,为维持电池组SOC(State of Charge)一致,文章提出了一种新型控制策略,保证了电池组的控流均衡。根据电池组的能量分布,该均衡控制策略能够实现对均衡器开关、均衡电流方向和大小的控制,提高了整体的能量转移效率。利用Matlab进行模型仿真分析,仿真结果表明,均衡控制策略要比传统均衡控制策略更加有效。展开更多
时间自适应支持向量机(TA-SVM)方法在处理非静态数据集时表现出良好的性能,但仅根据邻接子分类器相似而获得的相关信息并不充分,由此可能会导致训练所得模型不可靠,限制其应用能力。该文通过定义子分类器序列的相关性衰减函数,提出新的...时间自适应支持向量机(TA-SVM)方法在处理非静态数据集时表现出良好的性能,但仅根据邻接子分类器相似而获得的相关信息并不充分,由此可能会导致训练所得模型不可靠,限制其应用能力。该文通过定义子分类器序列的相关性衰减函数,提出新的面向非静态数据分类问题的演进支持向量机(Evolving Support VectorMachines,ESVM)。ESVM使用衰变函数以体现子分类器之间的相关程度,通过约束所有子分类器之间的带权差异以求得变化更光滑的子分类器序列,契合了数据中隐藏的渐变概念。在各种数据缓慢变化场景的对比实验中,该文的ESVM方法优于TA-SVM方法。展开更多
文摘传统Cuk均衡控制策略能量转移效率低,为维持电池组SOC(State of Charge)一致,文章提出了一种新型控制策略,保证了电池组的控流均衡。根据电池组的能量分布,该均衡控制策略能够实现对均衡器开关、均衡电流方向和大小的控制,提高了整体的能量转移效率。利用Matlab进行模型仿真分析,仿真结果表明,均衡控制策略要比传统均衡控制策略更加有效。
文摘时间自适应支持向量机(TA-SVM)方法在处理非静态数据集时表现出良好的性能,但仅根据邻接子分类器相似而获得的相关信息并不充分,由此可能会导致训练所得模型不可靠,限制其应用能力。该文通过定义子分类器序列的相关性衰减函数,提出新的面向非静态数据分类问题的演进支持向量机(Evolving Support VectorMachines,ESVM)。ESVM使用衰变函数以体现子分类器之间的相关程度,通过约束所有子分类器之间的带权差异以求得变化更光滑的子分类器序列,契合了数据中隐藏的渐变概念。在各种数据缓慢变化场景的对比实验中,该文的ESVM方法优于TA-SVM方法。