期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于LSTM和先验知识的高速公路路面温度预报 被引量:4
1
作者 熊国玉 祖繁 +1 位作者 包云轩 王可心 《应用气象学报》 CSCD 北大核心 2024年第1期68-79,共12页
为了精准预报高速公路路面温度,为车辆安全行驶提供气象保障,采用2019—2022年南京市绕城高速公路上9个交通气象站及ERA5-land再分析数据,通过构建时间序列特征工程、引入物理机制相关数据两类方法结合先验知识,运用长短期记忆神经网络... 为了精准预报高速公路路面温度,为车辆安全行驶提供气象保障,采用2019—2022年南京市绕城高速公路上9个交通气象站及ERA5-land再分析数据,通过构建时间序列特征工程、引入物理机制相关数据两类方法结合先验知识,运用长短期记忆神经网络模型建立研究区域内4个交通气象站未来3 h逐10 min路面温度多步预报模型并进行验证;在此基础上,将已建立的模型应用于其他交通气象站,探究模型的适用性。结果表明:结合先验知识后,模型预报性能明显提高,准确率在85%以上,且随着预报时效的延长,性能提升更为明显,准确率最高提升36%;模型能较为准确地预报路面极端低温发生的时间和极值,且在预报时效较短时对路面极端高温的预报也具有一定参考价值;利用已建立的模型对其他交通气象站的路面温度进行预报时,准确率在62%以上,在预报时效较短时效果较好,准确率在80%以上,且交通气象站所处的下垫面背景类型对模型的选择起关键作用。 展开更多
关键词 高速公路 路面温度 长短期记忆神经网络 先验知识 多步预报模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部