期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于EMD和支持向量机的柴油机故障诊断
被引量:
31
1
作者
沈志熙
黄席樾
马笑潇
《振动.测试与诊断》
EI
CSCD
北大核心
2010年第1期19-22,共4页
为了解决传统小波或小波包变换方法对柴油机振动信号频率分辨率不高、易受邻近谐波分量间交叠影响的缺陷,提出了一种基于经验模态分解和支持向量机的故障诊断方法。该方法首先对振动信号进行经验模态分解,分别提取能量最大的几个基本模...
为了解决传统小波或小波包变换方法对柴油机振动信号频率分辨率不高、易受邻近谐波分量间交叠影响的缺陷,提出了一种基于经验模态分解和支持向量机的故障诊断方法。该方法首先对振动信号进行经验模态分解,分别提取能量最大的几个基本模式分量的小波包特征;然后采用支持向量机在每个独立的特征子集中进行训练,并按该子集对应的基本模式分量的能量权重进行加权融合。试验中将该方法应用于6135型柴油机的故障诊断,结果表明,针对每个基本模式分量分别进行故障分析是可行的,能够对6135型柴油机常见故障模式进行准确识别。
展开更多
关键词
故障诊断
经验模态分解
基本模式分量
支持向量机
小波包变换
在线阅读
下载PDF
职称材料
题名
基于EMD和支持向量机的柴油机故障诊断
被引量:
31
1
作者
沈志熙
黄席樾
马笑潇
机构
重庆大学自动化学院
新西兰况得实仪器有限公司
出处
《振动.测试与诊断》
EI
CSCD
北大核心
2010年第1期19-22,共4页
基金
国家自然科学基金资助项目(编号:60443006)
文摘
为了解决传统小波或小波包变换方法对柴油机振动信号频率分辨率不高、易受邻近谐波分量间交叠影响的缺陷,提出了一种基于经验模态分解和支持向量机的故障诊断方法。该方法首先对振动信号进行经验模态分解,分别提取能量最大的几个基本模式分量的小波包特征;然后采用支持向量机在每个独立的特征子集中进行训练,并按该子集对应的基本模式分量的能量权重进行加权融合。试验中将该方法应用于6135型柴油机的故障诊断,结果表明,针对每个基本模式分量分别进行故障分析是可行的,能够对6135型柴油机常见故障模式进行准确识别。
关键词
故障诊断
经验模态分解
基本模式分量
支持向量机
小波包变换
Keywords
fault diagnosis empirical mode decomposition intrinsic mode function support vector machine wavelet packet transform
分类号
TP206.3 [自动化与计算机技术—检测技术与自动化装置]
TK428 [动力工程及工程热物理—动力机械及工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于EMD和支持向量机的柴油机故障诊断
沈志熙
黄席樾
马笑潇
《振动.测试与诊断》
EI
CSCD
北大核心
2010
31
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部