现有回声状态网络(Echo State Networks,ESNs)的通信话务量预测方法只考虑了历史通信话务量对预测性能的影响,较少涉及多个输入变量的通信话务量预测问题。文中首先针对ESNs用于实际多元时间序列预测任务时训练效率低,输入数据维数较多...现有回声状态网络(Echo State Networks,ESNs)的通信话务量预测方法只考虑了历史通信话务量对预测性能的影响,较少涉及多个输入变量的通信话务量预测问题。文中首先针对ESNs用于实际多元时间序列预测任务时训练效率低,输入数据维数较多时计算复杂度大的问题,提出用改进的交替方向乘子算法(IAD-ESNs算法)训练ESNs;针对单一输入变量不能提供更加全面的预测信息,提出了改进ESNs的多变量预测模型(MP-IADMM-ESNs)。以真实通信话务量数据进行仿真实验,结果表明,提出的预测模型MP-IADMM-ESNs对多变量通信话务量预测有较高的预测精度和预测效率。展开更多
文摘现有回声状态网络(Echo State Networks,ESNs)的通信话务量预测方法只考虑了历史通信话务量对预测性能的影响,较少涉及多个输入变量的通信话务量预测问题。文中首先针对ESNs用于实际多元时间序列预测任务时训练效率低,输入数据维数较多时计算复杂度大的问题,提出用改进的交替方向乘子算法(IAD-ESNs算法)训练ESNs;针对单一输入变量不能提供更加全面的预测信息,提出了改进ESNs的多变量预测模型(MP-IADMM-ESNs)。以真实通信话务量数据进行仿真实验,结果表明,提出的预测模型MP-IADMM-ESNs对多变量通信话务量预测有较高的预测精度和预测效率。