期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于MOGOA-VMD-LSSVM的轴承故障诊断方法研究
1
作者 张辉 宋泓炎 +3 位作者 范华超 赵连明 江帆 鲁宗虎 《煤炭工程》 北大核心 2025年第2期149-155,共7页
针对煤基活性炭生产设备轴承故障类型难以准确诊断的问题,提出了一种多目标蝗虫优化算法(MOGOA)优化变分模态分解(VMD)与最小二乘支持向量机(LSSVM)的煤基活性炭生产设备轴承故障诊断方法。首先,针对传统蝗虫优化算法(GOA)参数敏感、易... 针对煤基活性炭生产设备轴承故障类型难以准确诊断的问题,提出了一种多目标蝗虫优化算法(MOGOA)优化变分模态分解(VMD)与最小二乘支持向量机(LSSVM)的煤基活性炭生产设备轴承故障诊断方法。首先,针对传统蝗虫优化算法(GOA)参数敏感、易于陷入局部最优的问题,引入多目标蝗虫优化算法,通过引入基于排列熵与峭度倒数归一化的复合适应度函数,优化VMD的惩罚因子和分解层数。其次,使用优化VMD分解提取的轴承振动信号并筛选出敏感变分模态分量(IMF)进行重构。最后,通过MOGOA优化LSSVM模型,形成MOGOA-LSSVM故障诊断模型。与GOA-LSSVM方法对比,本研究所提方法故障诊断准确率提高了5%,运行时间缩短了9.72 s,验证了该方法在故障诊断方面的优势。 展开更多
关键词 煤基活性炭设备 轴承 多目标蝗虫优化算法 VMD LSSVM
在线阅读 下载PDF
锂电池SOC估计的实现方法分析与性能对比 被引量:16
2
作者 黎冲 王成辉 +2 位作者 王高 鲁宗虎 马成智 《储能科学与技术》 CAS CSCD 北大核心 2022年第10期3328-3344,共17页
锂电池荷电状态(state of charge,SOC)估计技术是保证电力储能和电动汽车合理应用的核心技术,也是锂电池系统控制运营、监测维护的基础。在锂电池实际应用中,其表现出非线性、时变性、影响因素复杂性和不确定性的问题,造成了荷电状态估... 锂电池荷电状态(state of charge,SOC)估计技术是保证电力储能和电动汽车合理应用的核心技术,也是锂电池系统控制运营、监测维护的基础。在锂电池实际应用中,其表现出非线性、时变性、影响因素复杂性和不确定性的问题,造成了荷电状态估计难度大、精度不高和适应能力不足。为此,众多锂电池荷电状态估计算法及改进策略应运而生。与此同时,部分研究人员针对不同估计方法和改进策略的实现方式和优缺点开展了分析与对比,但相关综述对估计方法的技术特点和适用性方面的论述不足且缺乏系统性总结。本文首先分析了锂电池荷电状态估计的影响因素和测试标准;然后从基于实验计算的传统方法、基于电池模型的滤波类算法、基于数据驱动的机器学习技术以及数模混合估计方法四个方面开展对比分析,归纳总结各类方法的技术特点、实现过程、适用条件、难题痛点以及应用优势,系统全面地论述了现有锂电池荷电状态估计技术的研究重点和应用现状;最后,展望了锂电池荷电状态估计算法的未来研究方向。 展开更多
关键词 锂电池荷电状态估计 实验计算方法 滤波估计算法 机器学习技术 数模驱动
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部