随着感知技术的不断发展以及智能交通基础设施的完善,智能网联汽车应用在自动驾驶领域的地位逐渐提升.自动驾驶感知从单车智能向车路协同迈进,近年来涌现出一批新的协同感知技术与方法.本文旨在全面阐述面向智能网联汽车的车路协同感知...随着感知技术的不断发展以及智能交通基础设施的完善,智能网联汽车应用在自动驾驶领域的地位逐渐提升.自动驾驶感知从单车智能向车路协同迈进,近年来涌现出一批新的协同感知技术与方法.本文旨在全面阐述面向智能网联汽车的车路协同感知技术,并总结相关可利用数据及该方向的发展趋势.首先对智能网联汽车的协同感知策略进行划分,并总结了不同感知策略具备的优势与不足;其次,对智能网联汽车协同感知的关键技术进行阐述,包括车路协同感知过程中的感知技术与通信技术;然后对车路协同感知方法进行归纳,总结了近年来解决协同感知中感知融合(Perception fusion,PF)、感知信息选择与压缩(Perception selection and compression,SC)等问题的相关研究;最后对车路协同感知的大规模数据集进行整理,并对智能网联汽车协同感知的发展趋势进行分析.展开更多
在信息化蓬勃发展的今日,大量云计算资源的高效管理是运维领域的重要难题。准确的负载预测是应对这一难题的关键技术。针对该问题提出一种基于局部加权回归周期趋势分解算法(Seasonal and Trend decomposition using Loess,STL)、Holt-W...在信息化蓬勃发展的今日,大量云计算资源的高效管理是运维领域的重要难题。准确的负载预测是应对这一难题的关键技术。针对该问题提出一种基于局部加权回归周期趋势分解算法(Seasonal and Trend decomposition using Loess,STL)、Holt-Winters模型和深度自回归模型(DeepAR)的组合预测模型STL-DeepAR-HW。先采用快速傅里叶变换和自相关函数提取数据的周期性特征,以提取到的最优周期对数据做STL分解,将数据分解为趋势项、季节项和余项;并用DeepAR和Holt-Winters分别预测趋势项和季节项,最后组合得到预测结果。在公开数据集AzurePublicDataset上进行实验,结果表明,与Transformer、Stacked-LSTM以及Prophet等模型相比,该组合模型在负载预测中具有更高的准确性和适用性。展开更多
跨域图异常检测通过带标签的源图辅助无标签目标图,提升了异常节点检测的准确性,进而有效降低了无监督图异常检测中的高误报率。尽管已有多种领域自适应方法被相继提出,但图数据复杂的拓扑结构与节点属性之间的关系使得源图与目标图之...跨域图异常检测通过带标签的源图辅助无标签目标图,提升了异常节点检测的准确性,进而有效降低了无监督图异常检测中的高误报率。尽管已有多种领域自适应方法被相继提出,但图数据复杂的拓扑结构与节点属性之间的关系使得源图与目标图之间的特征难以对齐;此外,图异常节点的多样性进一步增加了域对齐后的检测难度。为了解决上述问题,提出了一种新的跨域图异常检测框架,即双重分类和重建网络(Dual Classification and Reconstruction Network,DCRN)。该网络采用重建策略进行领域自适应,通过联合优化结构和属性的共享编码器、异常分类器和解码器,使共享编码器能够有效捕捉源图与目标图之间复杂的拓扑结构和节点属性关系,实现特征对齐与知识迁移。在对目标图进行异常检测的过程中,DCRN结合异常分类器和解码器的检测结果,识别与源图相似的异常节点以及仅存在于目标图中的特有异常,从而提升了模型的检测效果。在4个真实数据集上的实验表明,与10种基线方法相比,DCRN的AUC-ROC和AUC-PR平均提升了4.5%和20.5%,且FAR指标降低了16.13%。这些结果表明DCRN能够有效地检测目标图中的异常节点。展开更多
文摘随着感知技术的不断发展以及智能交通基础设施的完善,智能网联汽车应用在自动驾驶领域的地位逐渐提升.自动驾驶感知从单车智能向车路协同迈进,近年来涌现出一批新的协同感知技术与方法.本文旨在全面阐述面向智能网联汽车的车路协同感知技术,并总结相关可利用数据及该方向的发展趋势.首先对智能网联汽车的协同感知策略进行划分,并总结了不同感知策略具备的优势与不足;其次,对智能网联汽车协同感知的关键技术进行阐述,包括车路协同感知过程中的感知技术与通信技术;然后对车路协同感知方法进行归纳,总结了近年来解决协同感知中感知融合(Perception fusion,PF)、感知信息选择与压缩(Perception selection and compression,SC)等问题的相关研究;最后对车路协同感知的大规模数据集进行整理,并对智能网联汽车协同感知的发展趋势进行分析.
文摘在信息化蓬勃发展的今日,大量云计算资源的高效管理是运维领域的重要难题。准确的负载预测是应对这一难题的关键技术。针对该问题提出一种基于局部加权回归周期趋势分解算法(Seasonal and Trend decomposition using Loess,STL)、Holt-Winters模型和深度自回归模型(DeepAR)的组合预测模型STL-DeepAR-HW。先采用快速傅里叶变换和自相关函数提取数据的周期性特征,以提取到的最优周期对数据做STL分解,将数据分解为趋势项、季节项和余项;并用DeepAR和Holt-Winters分别预测趋势项和季节项,最后组合得到预测结果。在公开数据集AzurePublicDataset上进行实验,结果表明,与Transformer、Stacked-LSTM以及Prophet等模型相比,该组合模型在负载预测中具有更高的准确性和适用性。
文摘跨域图异常检测通过带标签的源图辅助无标签目标图,提升了异常节点检测的准确性,进而有效降低了无监督图异常检测中的高误报率。尽管已有多种领域自适应方法被相继提出,但图数据复杂的拓扑结构与节点属性之间的关系使得源图与目标图之间的特征难以对齐;此外,图异常节点的多样性进一步增加了域对齐后的检测难度。为了解决上述问题,提出了一种新的跨域图异常检测框架,即双重分类和重建网络(Dual Classification and Reconstruction Network,DCRN)。该网络采用重建策略进行领域自适应,通过联合优化结构和属性的共享编码器、异常分类器和解码器,使共享编码器能够有效捕捉源图与目标图之间复杂的拓扑结构和节点属性关系,实现特征对齐与知识迁移。在对目标图进行异常检测的过程中,DCRN结合异常分类器和解码器的检测结果,识别与源图相似的异常节点以及仅存在于目标图中的特有异常,从而提升了模型的检测效果。在4个真实数据集上的实验表明,与10种基线方法相比,DCRN的AUC-ROC和AUC-PR平均提升了4.5%和20.5%,且FAR指标降低了16.13%。这些结果表明DCRN能够有效地检测目标图中的异常节点。