期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于LightGBM的以太坊恶意账户检测方法 被引量:12
1
作者 边玲玉 张琳琳 +1 位作者 赵楷 石飞 《信息网络安全》 CSCD 北大核心 2020年第4期73-80,共8页
由于区块链匿名性的特点,以太坊逐渐成为恶意账户利用漏洞攻击、网络钓鱼等手段实施欺诈的平台。针对上述问题,文章提出了一种基于Light GBM的以太坊恶意账户检测方法。首先通过收集并标注8028个以太坊账户,基于交易历史规律提取手工特... 由于区块链匿名性的特点,以太坊逐渐成为恶意账户利用漏洞攻击、网络钓鱼等手段实施欺诈的平台。针对上述问题,文章提出了一种基于Light GBM的以太坊恶意账户检测方法。首先通过收集并标注8028个以太坊账户,基于交易历史规律提取手工特征;然后使用自动特征构造工具featuretools提取统计特征;最后通过融合的两类特征训练Light GBM分类器完成以太坊恶意账户检测。实验结果表明,文章提出方法的F1值为94.9%,相较于SVM、KNN等方法更加高效准确,引入手工特征有效提升了恶意账户的检测性能。 展开更多
关键词 区块链 恶意账户检测 以太坊 LightGBM
在线阅读 下载PDF
基于区块链技术的虚假新闻检测方法 被引量:8
2
作者 龚胜佳 张琳琳 +2 位作者 赵楷 刘军涛 杨涵 《计算机应用》 CSCD 北大核心 2022年第11期3458-3464,共7页
虚假新闻不仅会导致人们形成错误观念,损害人们的知情权,还会降低新闻网站公信力。针对新闻网站出现虚假新闻的问题,提出一种基于区块链技术的虚假新闻检测方法。首先,通过调用智能合约为新闻随机分配审核者来判定新闻的真实性。然后,... 虚假新闻不仅会导致人们形成错误观念,损害人们的知情权,还会降低新闻网站公信力。针对新闻网站出现虚假新闻的问题,提出一种基于区块链技术的虚假新闻检测方法。首先,通过调用智能合约为新闻随机分配审核者来判定新闻的真实性。然后,调整审核者数量以确保有效审核者的数量,提高审核结果的可信度。同时设计激励机制,根据审核者的行为分配奖励,并运用博弈论分析审核者的行为和获得的奖励,为了获得最大利益,审核者的行为必须是诚实的。而后设计审计机制检测恶意的审核者,以提高系统的安全性。最后,利用以太坊智能合约实现了一个简易的区块链虚假新闻检测系统,并对虚假新闻检测进行了仿真,结果显示所提方法的新闻真实性检测的准确率达到了95%,表明该方法可有效防止虚假新闻的发布。 展开更多
关键词 区块链 智能合约 虚假新闻 新闻网站 博弈论
在线阅读 下载PDF
基于敏感权限和API的Android恶意软件家族分类方法 被引量:7
3
作者 于媛尔 张琳琳 +4 位作者 赵楷 方文波 胡英杰 宋鑫 王晨跃 《郑州大学学报(理学版)》 CAS 北大核心 2020年第3期75-79,91,共6页
提出一种基于敏感权限和API的Android恶意软件家族分类方法,通过提取敏感权限和敏感API,将两部分特征进行融合,构建特征库,最后结合随机森林算法进行恶意软件的家族分类。实验结果表明,该方法的检测精确度达到98.4%,显著优于其他基线算... 提出一种基于敏感权限和API的Android恶意软件家族分类方法,通过提取敏感权限和敏感API,将两部分特征进行融合,构建特征库,最后结合随机森林算法进行恶意软件的家族分类。实验结果表明,该方法的检测精确度达到98.4%,显著优于其他基线算法,能够反映恶意软件的相似性和同源性。 展开更多
关键词 ANDROID 恶意软件家族 分类 随机森林
在线阅读 下载PDF
基于MobileNet的恶意软件家族分类模型 被引量:10
4
作者 曾娅琴 张琳琳 +1 位作者 张若楠 杨波 《计算机工程》 CAS CSCD 北大核心 2020年第4期162-168,共7页
现有基于卷积神经网络(CNN)的恶意代码分类方法存在计算资源消耗较大的问题.为降低分类过程中的计算量和参数量,构建基于恶意代码可视化和轻量级CNN模型的恶意软件家族分类模型.将恶意软件可视化为灰度图,以灰度图的相似度表示同一家族... 现有基于卷积神经网络(CNN)的恶意代码分类方法存在计算资源消耗较大的问题.为降低分类过程中的计算量和参数量,构建基于恶意代码可视化和轻量级CNN模型的恶意软件家族分类模型.将恶意软件可视化为灰度图,以灰度图的相似度表示同一家族的恶意软件在代码结构上的相似性,利用灰度图训练带有深度可分离卷积的神经网络模型MobileNet v2,自动提取纹理特征,并采用Softmax分类器对恶意代码进行家族分类.实验结果表明,该模型对恶意代码分类的平均准确率为99.32%,较经典的恶意代码可视化模型高出2.14个百分点. 展开更多
关键词 卷积神经网络 恶意软件分类 纹理特征 MobileNet v2模型 Softmax模型
在线阅读 下载PDF
基于随机森林的Android恶意软件检测方法研究 被引量:9
5
作者 宋鑫 赵楷 +1 位作者 张琳琳 方文波 《信息网络安全》 CSCD 北大核心 2019年第9期1-5,共5页
文章基于随机森林提出一种Android恶意软件检测方法。以Android的权限作为特征定义了有效权限,利用数据挖掘算法中的支持度和关联规则对权限进行分析,实现有效权限识别。文章构建了随机森林分类器,将有效权限矩阵作为分类器的输入进行... 文章基于随机森林提出一种Android恶意软件检测方法。以Android的权限作为特征定义了有效权限,利用数据挖掘算法中的支持度和关联规则对权限进行分析,实现有效权限识别。文章构建了随机森林分类器,将有效权限矩阵作为分类器的输入进行训练和测试。实验结果表明,文中方法的检测结果准确率达到92.84%,F值达到93.05%,明显优于其他检测模型。 展开更多
关键词 Android恶意软件检测 有效权限 关联规则 随机森林
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部