期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
露天矿山下无人矿卡的轻量级障碍检测算法
被引量:
1
1
作者
程铄棋
伊力哈木·亚尔买买提
+2 位作者
谢丽蓉
李熙玉
马颖
《煤炭科学技术》
北大核心
2025年第7期262-274,共13页
随着人工智能技术不断发展和智慧矿山理念的逐步推进,传统露天矿山的运营模式正在被自动化方式取代。无人矿卡作为智慧矿山的重要组成部分,其推广应用有效解决了因矿区地形不规则、路面坑洼或恶劣天气等因素导致的矿卡翻车、侧滑等问题...
随着人工智能技术不断发展和智慧矿山理念的逐步推进,传统露天矿山的运营模式正在被自动化方式取代。无人矿卡作为智慧矿山的重要组成部分,其推广应用有效解决了因矿区地形不规则、路面坑洼或恶劣天气等因素导致的矿卡翻车、侧滑等问题,从而显著降低了由此引发的伤亡事故。准确的检测目标类别是做避障决策的前提,而模型轻量化可以在资源有限的条件下很好地部署。因此,针对露天矿山场景下,无人矿卡目标检测算法存在参数量多、模型较大及小目标和遮挡目标检测准确率低的问题,提出轻量级无人矿卡检测算法LWHP(Lightweight High-Precision),设计思路有以下4点:其一,提出高效加权双向的特征金字塔网络R-BiFPN,利用这一结构重构颈部网络,通过跨层连接及双向传播,减少冗余计算路径,并通过加权特征融合方式增强多尺度特征融合能力,提升小目标检测能力的同时大幅度降低参数量;其二,设计带有多头注意力机制的检测解耦头,改善卷积层冗余导致网络复杂的问题,并处理空间维度以集中捕捉目标特征,减弱无关背景干扰,提升遮挡目标识别准确率;其三,利用双重卷积构建轻量级神经网络CDC,增强通道间信息流动,提高模型特征表达能力并降低模型复杂度;其四,引入EIOU损失函数,分别计算目标边界框的宽高差异,并加入Focal Loss解决难易样本不平衡问题,获得更快的收敛速度和更优秀的定位能力。试验表明:改进后算法相较于原始算法参数量降低50.2%,计算量减少46.3%,模型大小压缩47.6%,仅有3.3 MB,且FPS达到92.9,满足实时性需求。精度提升1.6%,召回率提升3.1%,平均精度达到79.6%,相比原模型提升2%,保证轻量级部署的同时提升了检测准确率。
展开更多
关键词
无人矿卡
目标检测
LWHP
轻量化
加权双向特征金字塔网络
多头注意力机制
在线阅读
下载PDF
职称材料
题名
露天矿山下无人矿卡的轻量级障碍检测算法
被引量:
1
1
作者
程铄棋
伊力哈木·亚尔买买提
谢丽蓉
李熙玉
马颖
机构
新疆大学
电气工程学院
新疆大学新疆露天矿智能生产与管控重点实验室
出处
《煤炭科学技术》
北大核心
2025年第7期262-274,共13页
基金
新疆厅厅联动项目-自进化学习型露天矿自动驾驶系统关键技术研究资助项目(2023B01006)
基于深度学习的数字图像篡改检测技术研究资助项目(62362063)。
文摘
随着人工智能技术不断发展和智慧矿山理念的逐步推进,传统露天矿山的运营模式正在被自动化方式取代。无人矿卡作为智慧矿山的重要组成部分,其推广应用有效解决了因矿区地形不规则、路面坑洼或恶劣天气等因素导致的矿卡翻车、侧滑等问题,从而显著降低了由此引发的伤亡事故。准确的检测目标类别是做避障决策的前提,而模型轻量化可以在资源有限的条件下很好地部署。因此,针对露天矿山场景下,无人矿卡目标检测算法存在参数量多、模型较大及小目标和遮挡目标检测准确率低的问题,提出轻量级无人矿卡检测算法LWHP(Lightweight High-Precision),设计思路有以下4点:其一,提出高效加权双向的特征金字塔网络R-BiFPN,利用这一结构重构颈部网络,通过跨层连接及双向传播,减少冗余计算路径,并通过加权特征融合方式增强多尺度特征融合能力,提升小目标检测能力的同时大幅度降低参数量;其二,设计带有多头注意力机制的检测解耦头,改善卷积层冗余导致网络复杂的问题,并处理空间维度以集中捕捉目标特征,减弱无关背景干扰,提升遮挡目标识别准确率;其三,利用双重卷积构建轻量级神经网络CDC,增强通道间信息流动,提高模型特征表达能力并降低模型复杂度;其四,引入EIOU损失函数,分别计算目标边界框的宽高差异,并加入Focal Loss解决难易样本不平衡问题,获得更快的收敛速度和更优秀的定位能力。试验表明:改进后算法相较于原始算法参数量降低50.2%,计算量减少46.3%,模型大小压缩47.6%,仅有3.3 MB,且FPS达到92.9,满足实时性需求。精度提升1.6%,召回率提升3.1%,平均精度达到79.6%,相比原模型提升2%,保证轻量级部署的同时提升了检测准确率。
关键词
无人矿卡
目标检测
LWHP
轻量化
加权双向特征金字塔网络
多头注意力机制
Keywords
unmanned mining trucks
target detection
LWHP
lightweighting
weighted bidirectional feature pyramid network
multi-head attention mechanism
分类号
TD57 [矿业工程—矿山机电]
TP18 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
露天矿山下无人矿卡的轻量级障碍检测算法
程铄棋
伊力哈木·亚尔买买提
谢丽蓉
李熙玉
马颖
《煤炭科学技术》
北大核心
2025
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部