期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
构建并验证反向传播神经网络模型对筛选重症手足口病影响因素的性能
被引量:
1
1
作者
陈琳
冯慧芬
+1 位作者
屈质
马驰
《安徽医科大学学报》
北大核心
2024年第12期2222-2229,共8页
目的通过构建反向传播神经网络(BPNN)模型,筛选重症手足口病(HFMD)临床早期预警指标,探讨神经网络技术在临床中的应用价值。方法收集河南省新乡医学院第一附属医院感染科及儿科2019年1月至2023年1月收治的HFMD患儿临床资料,使用SPSS Mod...
目的通过构建反向传播神经网络(BPNN)模型,筛选重症手足口病(HFMD)临床早期预警指标,探讨神经网络技术在临床中的应用价值。方法收集河南省新乡医学院第一附属医院感染科及儿科2019年1月至2023年1月收治的HFMD患儿临床资料,使用SPSS Modeler18.0将数据分为70%的训练样本和30%的测试样本,并构建BPNN模型和Logistic模型,对比评估模型预测准确性及筛选效果。结果共收集589例患儿临床资料进行分析,轻症组324例,重症组265例。BPNN模型和Logistic回归模型的测试集(n=178)预测正确率为82.02%、84.83%;ROC曲线下面积及95%CI分别为0.791(0.749~0.834)和0.625(0.577~0.674)。BPNN模型输出的预测变量中,对分组影响最大的前5位因素为:最高体温、发热持续时间、谷氨酰转肽酶、天冬氨酸氨基转移酶和球蛋白。两模型输出预测变量重要性结果前十位中重合的有3个,分别为:最高体温、发热持续时间和肢体抖动。结论BPNN模型和Logistic回归模型在筛选验证重症手足口病危险因素方面均表现良好,但BPNN模型的综合预测性能更好,BPNN模型筛选出的前五名重症HFMD影响因素为最高体温、发热持续时间、谷氨酰转肽酶、天冬氨酸氨基转移酶和球蛋白。
展开更多
关键词
重症手足口病
反向传播神经网络模型
预测
人工神经网络
LOGISTIC回归模型
机器学习
在线阅读
下载PDF
职称材料
题名
构建并验证反向传播神经网络模型对筛选重症手足口病影响因素的性能
被引量:
1
1
作者
陈琳
冯慧芬
屈质
马驰
机构
郑州大学第五
附属
医院
消化内科
郑州大学第五
附属
医院
感染科
新乡医学院第一附属医院全科医学科
出处
《安徽医科大学学报》
北大核心
2024年第12期2222-2229,共8页
基金
国家自然科学基金项目(编号:81473030)
河南省医学科技攻关计划项目(编号:LHGJ20190426)。
文摘
目的通过构建反向传播神经网络(BPNN)模型,筛选重症手足口病(HFMD)临床早期预警指标,探讨神经网络技术在临床中的应用价值。方法收集河南省新乡医学院第一附属医院感染科及儿科2019年1月至2023年1月收治的HFMD患儿临床资料,使用SPSS Modeler18.0将数据分为70%的训练样本和30%的测试样本,并构建BPNN模型和Logistic模型,对比评估模型预测准确性及筛选效果。结果共收集589例患儿临床资料进行分析,轻症组324例,重症组265例。BPNN模型和Logistic回归模型的测试集(n=178)预测正确率为82.02%、84.83%;ROC曲线下面积及95%CI分别为0.791(0.749~0.834)和0.625(0.577~0.674)。BPNN模型输出的预测变量中,对分组影响最大的前5位因素为:最高体温、发热持续时间、谷氨酰转肽酶、天冬氨酸氨基转移酶和球蛋白。两模型输出预测变量重要性结果前十位中重合的有3个,分别为:最高体温、发热持续时间和肢体抖动。结论BPNN模型和Logistic回归模型在筛选验证重症手足口病危险因素方面均表现良好,但BPNN模型的综合预测性能更好,BPNN模型筛选出的前五名重症HFMD影响因素为最高体温、发热持续时间、谷氨酰转肽酶、天冬氨酸氨基转移酶和球蛋白。
关键词
重症手足口病
反向传播神经网络模型
预测
人工神经网络
LOGISTIC回归模型
机器学习
Keywords
severe hand-foot-mouth disease
back propagation neural network
prediction
artificial neural network
Logistic regression model
machine learning
分类号
R512.57 [医药卫生—内科学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
构建并验证反向传播神经网络模型对筛选重症手足口病影响因素的性能
陈琳
冯慧芬
屈质
马驰
《安徽医科大学学报》
北大核心
2024
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部