为了解决无人机航拍图片玉米植株中心检测所面临的诸多挑战,包括植株遮挡、形态多样、光照变化以及视觉混淆等问题,提升检测精度和模型的鲁棒性,开发了一种基于YOLO-TSCAS(YOLO with triplet-attention,saliencyadaptive,and centroid a...为了解决无人机航拍图片玉米植株中心检测所面临的诸多挑战,包括植株遮挡、形态多样、光照变化以及视觉混淆等问题,提升检测精度和模型的鲁棒性,开发了一种基于YOLO-TSCAS(YOLO with triplet-attention,saliencyadaptive,and centroid awareness for scenes)模型的玉米植株中心检测算法。该算法通过三重注意力模块、显著性裁剪混合数据增强方法、自适应池化技术和选择性多单元激活函数等技术手段,有效提高了检测精度和鲁棒性。采用三重注意力模块解决目标遮挡和视觉混淆问题,使模型能够更好地关注植株中心区域。采用显著性裁剪混合数据增强方法,在训练过程中引入不同的环境和光照变化,增强了模型对复杂场景的适应能力。结合自适应池化技术提高空间分辨率,有助于捕捉更精细的特征信息,提高检测的准确性。采用选择性多单元激活函数进一步增强了网络的学习能力,使模型能够更好地适应各种场景下的植株中心检测任务。实验结果表明,与现有的YOLOX算法相比,YOLO-TSCAS算法在平均准确率和平均F1值上分别提高了22.73个百分点和0.255,并且平均对数漏检率也显著降低了0.35。与其他流行的检测模型相比,在两类植株中心目标检测精度上也取得了最佳效果。展开更多
针对受田间变化光照影响冠层图像参数计算的精度及自动化程度仍然不高的问题,该文提出了一种基于冠层顶视单角度红外图像序列的玉米叶面积指数(leaf area index,LAI)获取方法。首先,在玉米整个生育期内获取冠层顶部垂直向下红外图像序列...针对受田间变化光照影响冠层图像参数计算的精度及自动化程度仍然不高的问题,该文提出了一种基于冠层顶视单角度红外图像序列的玉米叶面积指数(leaf area index,LAI)获取方法。首先,在玉米整个生育期内获取冠层顶部垂直向下红外图像序列,针对冠层图像背景分割易受田间变化光照影响,提出了一种基于绿色植物"红边"现象和冠层图像背景正态分布模型的分割方法,方法计算简便精度高于支持向量机分割。在冠层参数解析阶段,根据玉米叶片球形分布假设,简化了顶视冠层图像的叶片投影函数(G函数),利用Beer-Lambert定律推导了图像冠层孔隙度计算叶面积指数的方法。试验结果表明:该方法与间接测量原理的商业化设备测量值具有较高的相关性,叶面积指数测量的决定系数为0.94。方法应用于2个不同年代品种冠层结构动态变化监测,能够准确反映冠层结构差异,建立了冠层孔隙度与植株干质量(R2=0.95,R2=0.94)植株鲜质量(R2=0.96,R2=0.89)的关系模型,该方法简化了玉米冠层结构参数测量过程,可为田间环境下冠层参数的自动连续监测提供了解决方案。展开更多
为提高农业题材三维数字媒体内容制作效率,提出基于SPAD(soil and plant analyzer development)和生育期农学参数的作物叶片表观建模与可视化方法,并以玉米为例进行实际验证。将玉米叶片分成叶肉、一级叶脉、二级叶脉3种结构,首先获取...为提高农业题材三维数字媒体内容制作效率,提出基于SPAD(soil and plant analyzer development)和生育期农学参数的作物叶片表观建模与可视化方法,并以玉米为例进行实际验证。将玉米叶片分成叶肉、一级叶脉、二级叶脉3种结构,首先获取主要生育期下各结构表观材质(包括漫反射强度、透射强度、高光反射强度、粗糙度4种参数)及SPAD数据;之后构建各类表观材质参数与SPAD及生育期之间的定量化模型;再对玉米叶片纹理样式进行抽象,构建参数化的玉米纹理结构几何表达,并基于定量化模型为纹理结构分配表观参数;最后整合实时光照计算框架,对大田光环境下玉米表观进行可视化模拟。该文方法搭建了农业知识与三维可视化效果间的桥梁,使用户可以通过调整农学参数实现对作物叶片表观的快速、准确设计与制作,为农业题材的三维数字资源开发提供技术工具。展开更多
文摘为了解决无人机航拍图片玉米植株中心检测所面临的诸多挑战,包括植株遮挡、形态多样、光照变化以及视觉混淆等问题,提升检测精度和模型的鲁棒性,开发了一种基于YOLO-TSCAS(YOLO with triplet-attention,saliencyadaptive,and centroid awareness for scenes)模型的玉米植株中心检测算法。该算法通过三重注意力模块、显著性裁剪混合数据增强方法、自适应池化技术和选择性多单元激活函数等技术手段,有效提高了检测精度和鲁棒性。采用三重注意力模块解决目标遮挡和视觉混淆问题,使模型能够更好地关注植株中心区域。采用显著性裁剪混合数据增强方法,在训练过程中引入不同的环境和光照变化,增强了模型对复杂场景的适应能力。结合自适应池化技术提高空间分辨率,有助于捕捉更精细的特征信息,提高检测的准确性。采用选择性多单元激活函数进一步增强了网络的学习能力,使模型能够更好地适应各种场景下的植株中心检测任务。实验结果表明,与现有的YOLOX算法相比,YOLO-TSCAS算法在平均准确率和平均F1值上分别提高了22.73个百分点和0.255,并且平均对数漏检率也显著降低了0.35。与其他流行的检测模型相比,在两类植株中心目标检测精度上也取得了最佳效果。
文摘针对受田间变化光照影响冠层图像参数计算的精度及自动化程度仍然不高的问题,该文提出了一种基于冠层顶视单角度红外图像序列的玉米叶面积指数(leaf area index,LAI)获取方法。首先,在玉米整个生育期内获取冠层顶部垂直向下红外图像序列,针对冠层图像背景分割易受田间变化光照影响,提出了一种基于绿色植物"红边"现象和冠层图像背景正态分布模型的分割方法,方法计算简便精度高于支持向量机分割。在冠层参数解析阶段,根据玉米叶片球形分布假设,简化了顶视冠层图像的叶片投影函数(G函数),利用Beer-Lambert定律推导了图像冠层孔隙度计算叶面积指数的方法。试验结果表明:该方法与间接测量原理的商业化设备测量值具有较高的相关性,叶面积指数测量的决定系数为0.94。方法应用于2个不同年代品种冠层结构动态变化监测,能够准确反映冠层结构差异,建立了冠层孔隙度与植株干质量(R2=0.95,R2=0.94)植株鲜质量(R2=0.96,R2=0.89)的关系模型,该方法简化了玉米冠层结构参数测量过程,可为田间环境下冠层参数的自动连续监测提供了解决方案。
文摘为提高农业题材三维数字媒体内容制作效率,提出基于SPAD(soil and plant analyzer development)和生育期农学参数的作物叶片表观建模与可视化方法,并以玉米为例进行实际验证。将玉米叶片分成叶肉、一级叶脉、二级叶脉3种结构,首先获取主要生育期下各结构表观材质(包括漫反射强度、透射强度、高光反射强度、粗糙度4种参数)及SPAD数据;之后构建各类表观材质参数与SPAD及生育期之间的定量化模型;再对玉米叶片纹理样式进行抽象,构建参数化的玉米纹理结构几何表达,并基于定量化模型为纹理结构分配表观参数;最后整合实时光照计算框架,对大田光环境下玉米表观进行可视化模拟。该文方法搭建了农业知识与三维可视化效果间的桥梁,使用户可以通过调整农学参数实现对作物叶片表观的快速、准确设计与制作,为农业题材的三维数字资源开发提供技术工具。