期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
面向数据流的多粒度时变分形维数计算 被引量:2
1
作者 倪志伟 王超 +1 位作者 胡汤磊 倪丽萍 《软件学报》 EI CSCD 北大核心 2015年第10期2614-2630,共17页
在大数据时代,数据流是一种常见的数据模型,具有有序、海量、时变等特点.分形是许多复杂系统的重要特征,分形维数是度量系统分形特征的重要指标量.数据流作为动态的复杂系统,其上的分形维数应具有动态、时变、多粒度等特性.提出了多粒... 在大数据时代,数据流是一种常见的数据模型,具有有序、海量、时变等特点.分形是许多复杂系统的重要特征,分形维数是度量系统分形特征的重要指标量.数据流作为动态的复杂系统,其上的分形维数应具有动态、时变、多粒度等特性.提出了多粒度时变分形维数的概念,并设计了基于小波变换技术的数据流多粒度时变分形维数算法.该算法通过对数据流进行离散小波变换,并利用多粒度小波变换树结构在内存中保存数据流的概要信息,可以同时在不同的时间粒度上实时地计算数据流时变分形维数.该方法具有较低的计算复杂度,实验结果表明:该方法可以有效地监控数据流分形维数在不同粒度上的时变特征,深刻地揭示数据流的演化规律. 展开更多
关键词 数据流 分形维数 小波变换 多粒度 时变性
在线阅读 下载PDF
复杂事件处理的自适应制造情景识别方法 被引量:3
2
作者 任磊 任明仑 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2017年第11期171-177,共7页
制造过程中的任务、自然条件、电力水平等环境因素,制约物体状态及其关系的变化.智能制造单元需要自适应的对不同情境约束下的事件和复杂情形及时理解判断,提出基于复杂事件处理(Complex event processing,CEP)的情境约束情景识别方法,... 制造过程中的任务、自然条件、电力水平等环境因素,制约物体状态及其关系的变化.智能制造单元需要自适应的对不同情境约束下的事件和复杂情形及时理解判断,提出基于复杂事件处理(Complex event processing,CEP)的情境约束情景识别方法,以实时作出合理的优化决策.针对忽视情境约束对事件判别的影响,构建基于情境约束的多层次事件模型,给出同生、情境、协同等事件新算子,提出基于事件聚合的制造情景模型与演算过程.针对情景识别知识库中模式规则生成的不足,通过整合物体数据与环境数据建立映射关联,将感知信息转化为情境事件图谱.通过综合序数、名义变量等距离计算和自适应熵权法,提出改进的混合聚类方法处理事件图谱实例属性的多样性和关联性,构建知识库以为情景实时识别提供服务支持.运用4个真实数据集和1个制造过程仿真数据集进行实验,均验证本文模型和方法的有效性,适用于大规模学习问题,并阐明情境因素能显著提升复杂制造应用中的事件判断、情景识别的准确性. 展开更多
关键词 情境约束 数据流 复杂事件 情景识别 混合聚类方法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部