近年研究发现网络中的业务量呈自相似特征,这种自相似特征显著影响网络的流量控制与排队性能,本文在自相似网络流量可预测的基础上,利用线性回归分析理论进行流量预测,并应用控制理论中的预测PI控制器原理设计了动态矩阵PI控制主动队列...近年研究发现网络中的业务量呈自相似特征,这种自相似特征显著影响网络的流量控制与排队性能,本文在自相似网络流量可预测的基础上,利用线性回归分析理论进行流量预测,并应用控制理论中的预测PI控制器原理设计了动态矩阵PI控制主动队列管理(Dynam icMatrix PI Control-Active QueueManagement,简称DM-PIC-AQM)算法,以克服队列的剧烈振荡,保持队列稳定在期望的长度.仿真实验结果表明,DMPIC-AQM算法在网络流量剧烈变化和小期望队列长度的情形下,DMPIC-AQM算法明显优于RED与PI算法.展开更多
Network management has widely adopted multi-agent architecture, and AGIMA is one of the successful prototypes that have developed mobile code facilities and group management functions. Taking consideration on the requ...Network management has widely adopted multi-agent architecture, and AGIMA is one of the successful prototypes that have developed mobile code facilities and group management functions. Taking consideration on the requirements of exchange and sharing of network management information between agents, the network management information described by next generation structure of management information can be represented as knowledge by XML-based resource description framework. These efforts need integration of some newer toolkit software and become foundation for introduction of network management intelligence into agents.展开更多
网络流量特征分布的动态变化产生概念漂移问题,造成基于机器学习的网络流量分类模型精度下降.定期更新分类模型耗时且无法保证分类模型的泛化能力.基于此,提出一种基于散度的网络流概念漂移分类方法(ensemble classification based on d...网络流量特征分布的动态变化产生概念漂移问题,造成基于机器学习的网络流量分类模型精度下降.定期更新分类模型耗时且无法保证分类模型的泛化能力.基于此,提出一种基于散度的网络流概念漂移分类方法(ensemble classification based on divergence detection,ECDD),采用双层窗口机制,从信息熵的角度出发,根据流量特征分布的JS散度,记为JSD(Jensen-Shannon divergence)来度量滑动窗口内数据分布的差异,从而检测概念漂移.借鉴增量集成学习的思想,检测到漂移时对于新样本重新训练出新的分类器,之后通过分类器权值排序,保留性能较高的分类器,加权集成分类结果对样本进行分类.抓取常见的网络应用流量,根据应用特征分布的不同构建概念漂移数据集,将该方法与常见的概念漂移检测方法进行实验对比,实验结果表明:该方法可以有效地检测概念漂移和更新分类器,表现出较好的分类性能.展开更多
文摘近年研究发现网络中的业务量呈自相似特征,这种自相似特征显著影响网络的流量控制与排队性能,本文在自相似网络流量可预测的基础上,利用线性回归分析理论进行流量预测,并应用控制理论中的预测PI控制器原理设计了动态矩阵PI控制主动队列管理(Dynam icMatrix PI Control-Active QueueManagement,简称DM-PIC-AQM)算法,以克服队列的剧烈振荡,保持队列稳定在期望的长度.仿真实验结果表明,DMPIC-AQM算法在网络流量剧烈变化和小期望队列长度的情形下,DMPIC-AQM算法明显优于RED与PI算法.
文摘Network management has widely adopted multi-agent architecture, and AGIMA is one of the successful prototypes that have developed mobile code facilities and group management functions. Taking consideration on the requirements of exchange and sharing of network management information between agents, the network management information described by next generation structure of management information can be represented as knowledge by XML-based resource description framework. These efforts need integration of some newer toolkit software and become foundation for introduction of network management intelligence into agents.
文摘网络流量特征分布的动态变化产生概念漂移问题,造成基于机器学习的网络流量分类模型精度下降.定期更新分类模型耗时且无法保证分类模型的泛化能力.基于此,提出一种基于散度的网络流概念漂移分类方法(ensemble classification based on divergence detection,ECDD),采用双层窗口机制,从信息熵的角度出发,根据流量特征分布的JS散度,记为JSD(Jensen-Shannon divergence)来度量滑动窗口内数据分布的差异,从而检测概念漂移.借鉴增量集成学习的思想,检测到漂移时对于新样本重新训练出新的分类器,之后通过分类器权值排序,保留性能较高的分类器,加权集成分类结果对样本进行分类.抓取常见的网络应用流量,根据应用特征分布的不同构建概念漂移数据集,将该方法与常见的概念漂移检测方法进行实验对比,实验结果表明:该方法可以有效地检测概念漂移和更新分类器,表现出较好的分类性能.