国内三文鱼市场鱼龙混杂,假冒问题严重,但鉴别方法有限。采用红外光谱技术结合偏最小二乘判别分析法(PLS-DA)研究了黑龙江大马哈鱼、淡水虹鳟、智利太平洋鲑三种鱼肉对挪威三文鱼的冒充问题。采用FITR光谱仪和KBr压片法采集四种肉类的...国内三文鱼市场鱼龙混杂,假冒问题严重,但鉴别方法有限。采用红外光谱技术结合偏最小二乘判别分析法(PLS-DA)研究了黑龙江大马哈鱼、淡水虹鳟、智利太平洋鲑三种鱼肉对挪威三文鱼的冒充问题。采用FITR光谱仪和KBr压片法采集四种肉类的原始光谱,并对原始光谱分别进行多元散射校正(MSC)、Savitzky-Golay平滑、一阶导数(first derivative)、标准正则变换(SNV)、峰面积归一化(peak area normalization)五种预处理来消除噪声等干扰因素并确定最佳预处理方法。为建立PLS-DA鉴别模型,将四种鱼肉的光谱分别赋予-3,-1,1和3四个参考分值,建模后通过预测检测集鱼肉得分来检验模型准确性。结果表明:采用峰面积归一化法时,PLS-DA检测模型的效果最好,校正集和交叉验证集的决定系数分别为0.97和0.95。RMSEC和RMSECV分别为0.37和0.52。该模型能显著区分四种鱼肉、检测集的预测分值分别聚集在各自的参考分值附近,在阈值为±1的判别条件下预测准确度为96%。同时采用马氏距离法进一步对四种鱼肉的光谱进行分析,发现相互之间差异明显,其中挪威三文鱼与其品种差别最大的淡水虹鳟距离最大,与其比较接近的智利太平洋鲑的距离最小,红外光谱信息能够反映不同鱼肉的品种、生活环境等差异。因此,采用红外光谱技术结合PLS-DA法能够准确的鉴别出其他鱼肉对挪威三文鱼的冒充问题,同时对其他肉类检测有一定借鉴意义。展开更多
为实现生猪瘦肉率的快速无损检测,以机器视觉为主要技术,通过生猪的外形特征图像进行瘦肉率估测,为饲养者与收购者提供生猪品级的决策依据。采用MATLAB为开发工具,通过图形用户界面(graphical user interface,GUI)实现软件操作界面,以...为实现生猪瘦肉率的快速无损检测,以机器视觉为主要技术,通过生猪的外形特征图像进行瘦肉率估测,为饲养者与收购者提供生猪品级的决策依据。采用MATLAB为开发工具,通过图形用户界面(graphical user interface,GUI)实现软件操作界面,以生猪的侧面及背面图像为研究对象,利用图像处理技术从目标中提取体长、体高、胸深、腹长、臀宽、腰宽等数据,以这些体尺的比例(胸深体高比、臀宽体长比、臀宽腰宽比、腹长体长比)为参数,通过径向基函数(radial basis function,RBF)神经网络进行瘦肉率估测。该文分别对7组生猪外形图像进行处理,4项比例指标的平均估测准确率分别为92.90%、92.44%、95.17%、96.51%,瘦肉率的平均估测准确率为94.35%。结果表明,该文所构造的基于生猪外形特征图像的瘦肉率估测方法工作效率高,成本低,可用于估测生猪瘦肉率。展开更多
文摘国内三文鱼市场鱼龙混杂,假冒问题严重,但鉴别方法有限。采用红外光谱技术结合偏最小二乘判别分析法(PLS-DA)研究了黑龙江大马哈鱼、淡水虹鳟、智利太平洋鲑三种鱼肉对挪威三文鱼的冒充问题。采用FITR光谱仪和KBr压片法采集四种肉类的原始光谱,并对原始光谱分别进行多元散射校正(MSC)、Savitzky-Golay平滑、一阶导数(first derivative)、标准正则变换(SNV)、峰面积归一化(peak area normalization)五种预处理来消除噪声等干扰因素并确定最佳预处理方法。为建立PLS-DA鉴别模型,将四种鱼肉的光谱分别赋予-3,-1,1和3四个参考分值,建模后通过预测检测集鱼肉得分来检验模型准确性。结果表明:采用峰面积归一化法时,PLS-DA检测模型的效果最好,校正集和交叉验证集的决定系数分别为0.97和0.95。RMSEC和RMSECV分别为0.37和0.52。该模型能显著区分四种鱼肉、检测集的预测分值分别聚集在各自的参考分值附近,在阈值为±1的判别条件下预测准确度为96%。同时采用马氏距离法进一步对四种鱼肉的光谱进行分析,发现相互之间差异明显,其中挪威三文鱼与其品种差别最大的淡水虹鳟距离最大,与其比较接近的智利太平洋鲑的距离最小,红外光谱信息能够反映不同鱼肉的品种、生活环境等差异。因此,采用红外光谱技术结合PLS-DA法能够准确的鉴别出其他鱼肉对挪威三文鱼的冒充问题,同时对其他肉类检测有一定借鉴意义。
文摘为实现生猪瘦肉率的快速无损检测,以机器视觉为主要技术,通过生猪的外形特征图像进行瘦肉率估测,为饲养者与收购者提供生猪品级的决策依据。采用MATLAB为开发工具,通过图形用户界面(graphical user interface,GUI)实现软件操作界面,以生猪的侧面及背面图像为研究对象,利用图像处理技术从目标中提取体长、体高、胸深、腹长、臀宽、腰宽等数据,以这些体尺的比例(胸深体高比、臀宽体长比、臀宽腰宽比、腹长体长比)为参数,通过径向基函数(radial basis function,RBF)神经网络进行瘦肉率估测。该文分别对7组生猪外形图像进行处理,4项比例指标的平均估测准确率分别为92.90%、92.44%、95.17%、96.51%,瘦肉率的平均估测准确率为94.35%。结果表明,该文所构造的基于生猪外形特征图像的瘦肉率估测方法工作效率高,成本低,可用于估测生猪瘦肉率。