期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
用核K-means聚类减样法优化半定规划支持向量机 被引量:1
1
作者 何慧 胡小红 +1 位作者 覃华 张敏 《江西师范大学学报(自然科学版)》 CAS 北大核心 2013年第6期574-578,共5页
提出了使用核空间K-means聚类算法从训练集中抽取特征边界支持向量集,在边界集上构造支持向量机的半定规划问题,由于边界集的规模比原始训练集要小,降低了半定规划支持向量机的规模,达到优化向量机的目的.在UCI数据集上的实验结果表明:... 提出了使用核空间K-means聚类算法从训练集中抽取特征边界支持向量集,在边界集上构造支持向量机的半定规划问题,由于边界集的规模比原始训练集要小,降低了半定规划支持向量机的规模,达到优化向量机的目的.在UCI数据集上的实验结果表明:所提优化方法在求解多核半定规划向量机时,比原始方法获得几倍以上的速度提升,分类精度基本不变. 展开更多
关键词 支持向量机 半定规划 核K—means聚类 减样
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部