半深水灌溉是稻渔共作区别于水稻单作的主要环境特征,且半深水灌溉持续时间因具体模式而异。迄今为止,水稻生产力对半深水灌溉的响应还并不清楚。以扬粳805为试验材料,通过设置3种水分管理模式:(1)“浅、搁、湿、露、晒”灌溉模式,即水...半深水灌溉是稻渔共作区别于水稻单作的主要环境特征,且半深水灌溉持续时间因具体模式而异。迄今为止,水稻生产力对半深水灌溉的响应还并不清楚。以扬粳805为试验材料,通过设置3种水分管理模式:(1)“浅、搁、湿、露、晒”灌溉模式,即水稻常规高产灌溉模式(CI);(2)拔节期—抽穗后10 d维持半深水30~35 cm 40 d(SDI40d);(3)拔节期—抽穗后35 d维持半深水30~35 cm 65 d(SDI65d),初步研究了半深水灌溉处理对水稻产量、稻米品质和抗倒性的影响。结果表明,与CI处理相比,SDI40d处理实际产量降低了9.50%,SDI65d处理减产了13.20%,穗粒数和结实率降低是产量下降的主要原因。半深水灌溉处理下,扬粳805的加工品质和外观品质变劣;食味值降低,直链淀粉含量和各蛋白组分含量升高;RVA特征谱值热浆黏度、最终黏度升高,崩解值降低,且随着半深水灌溉持续时间变长,稻米品质持续变劣。半深水灌溉处理下,扬粳805株高整体呈上升趋势,茎粗、壁厚和抗折力呈下降趋势。相较于CI处理,半深水灌溉处理下倒伏指数升高,扬粳805的易倒伏风险增加,且2个不同半深水灌溉持续时间处理下扬粳805的倒伏指数接近。展开更多
在大田条件下比较了5个超级稻品种和对照汕优63的物质生产及氮素吸收利用特性。结果表明,超级稻物质生产与积累优势始于拔节期,并随着生育进程而扩大,抽穗以后的干物质量积累优势明显。超级稻对氮素的吸收积累总量达196.5(184.3-200.8...在大田条件下比较了5个超级稻品种和对照汕优63的物质生产及氮素吸收利用特性。结果表明,超级稻物质生产与积累优势始于拔节期,并随着生育进程而扩大,抽穗以后的干物质量积累优势明显。超级稻对氮素的吸收积累总量达196.5(184.3-200.8)kg hm^-2,较对照的176.5kg hm^-2增加20.0kg hm^-2,其中拔节前与对照相当,拔节至抽穗期增加9.2kg hm^-2,抽穗至抽穗后25d增加4.9kg hm^-2,抽穗后25d至成熟期增加4.3kg hm^-2。氮素吸收速率拔节至孕穗阶段达最高峰,超级稻为3.68(3.44-3.96)kg N hm^-2d^-1,对照为3.55kg N hm^-2d^-1;孕穗期以后吸氮速率随着生育进程而逐渐下降,抽穗25d以后,对照基本不具再吸收能力,而超级稻仍具一定吸收能力(0.36kg N hm^-2d^-1)。超级稻生育中、后期氮素吸收利用能力的提高促进了抽穗和灌浆结实期植株特别是叶片含氮率的提高,孕穗期、抽穗期、抽穗后25d、成熟期叶片含氮率均与相应生育阶段的干物质积累量显著相关,与最终总生物量极显著相关。超级稻在10.5t hm^-2产量水平下的百千克籽粒吸氮量在1.83kg左右。展开更多
在群体水培条件下,以国内外不同年代育成的籼稻代表品种(2001年为88个、2002年为122个)为材料,于抽穗期和成熟期测定根、茎鞘、绿叶、黄叶和穗等器官的干物重及不同器官的氮素含量,采用组内最小平方和动态聚类方法对供试品种的氮素籽粒...在群体水培条件下,以国内外不同年代育成的籼稻代表品种(2001年为88个、2002年为122个)为材料,于抽穗期和成熟期测定根、茎鞘、绿叶、黄叶和穗等器官的干物重及不同器官的氮素含量,采用组内最小平方和动态聚类方法对供试品种的氮素籽粒生产效率(NUEg)进行聚类,研究不同NUEg类型籼稻品种干物质生产与分配的特点。结果表明,(1)供试籼稻品种间NUEg的差异很大,A、B、C、D、E、F类籼稻品种的平均NUEg 2001年分别为20.51、31.04、35.64、39.46、43.555、0.92 g g-1,2002年分别为24.33、31.61、35.83、39.06、43.515、0.00 g g-1;(2)不同NUEg类型籼稻品种间生物产量差异不大,但高NUEg类型籼稻品种抽穗期干物质积累量较小,抽穗后干物质生产量大且占生物产量的比例高;(3)不同NUEg类型籼稻品种间抽穗期的根干重和茎鞘干重占全株干重的比例差异不大,但NUEg水平越高的籼稻品种,其成熟期的根重和茎鞘重占全株干重的比例越小;(4)NUEg水平越高的籼稻品种,其抽穗期和成熟期的叶片干重占全株干重的比例越小,穗干重占全株干重的比例越大。展开更多
文摘半深水灌溉是稻渔共作区别于水稻单作的主要环境特征,且半深水灌溉持续时间因具体模式而异。迄今为止,水稻生产力对半深水灌溉的响应还并不清楚。以扬粳805为试验材料,通过设置3种水分管理模式:(1)“浅、搁、湿、露、晒”灌溉模式,即水稻常规高产灌溉模式(CI);(2)拔节期—抽穗后10 d维持半深水30~35 cm 40 d(SDI40d);(3)拔节期—抽穗后35 d维持半深水30~35 cm 65 d(SDI65d),初步研究了半深水灌溉处理对水稻产量、稻米品质和抗倒性的影响。结果表明,与CI处理相比,SDI40d处理实际产量降低了9.50%,SDI65d处理减产了13.20%,穗粒数和结实率降低是产量下降的主要原因。半深水灌溉处理下,扬粳805的加工品质和外观品质变劣;食味值降低,直链淀粉含量和各蛋白组分含量升高;RVA特征谱值热浆黏度、最终黏度升高,崩解值降低,且随着半深水灌溉持续时间变长,稻米品质持续变劣。半深水灌溉处理下,扬粳805株高整体呈上升趋势,茎粗、壁厚和抗折力呈下降趋势。相较于CI处理,半深水灌溉处理下倒伏指数升高,扬粳805的易倒伏风险增加,且2个不同半深水灌溉持续时间处理下扬粳805的倒伏指数接近。
文摘在大田条件下比较了5个超级稻品种和对照汕优63的物质生产及氮素吸收利用特性。结果表明,超级稻物质生产与积累优势始于拔节期,并随着生育进程而扩大,抽穗以后的干物质量积累优势明显。超级稻对氮素的吸收积累总量达196.5(184.3-200.8)kg hm^-2,较对照的176.5kg hm^-2增加20.0kg hm^-2,其中拔节前与对照相当,拔节至抽穗期增加9.2kg hm^-2,抽穗至抽穗后25d增加4.9kg hm^-2,抽穗后25d至成熟期增加4.3kg hm^-2。氮素吸收速率拔节至孕穗阶段达最高峰,超级稻为3.68(3.44-3.96)kg N hm^-2d^-1,对照为3.55kg N hm^-2d^-1;孕穗期以后吸氮速率随着生育进程而逐渐下降,抽穗25d以后,对照基本不具再吸收能力,而超级稻仍具一定吸收能力(0.36kg N hm^-2d^-1)。超级稻生育中、后期氮素吸收利用能力的提高促进了抽穗和灌浆结实期植株特别是叶片含氮率的提高,孕穗期、抽穗期、抽穗后25d、成熟期叶片含氮率均与相应生育阶段的干物质积累量显著相关,与最终总生物量极显著相关。超级稻在10.5t hm^-2产量水平下的百千克籽粒吸氮量在1.83kg左右。
文摘在群体水培条件下,以国内外不同年代育成的籼稻代表品种(2001年为88个、2002年为122个)为材料,于抽穗期和成熟期测定根、茎鞘、绿叶、黄叶和穗等器官的干物重及不同器官的氮素含量,采用组内最小平方和动态聚类方法对供试品种的氮素籽粒生产效率(NUEg)进行聚类,研究不同NUEg类型籼稻品种干物质生产与分配的特点。结果表明,(1)供试籼稻品种间NUEg的差异很大,A、B、C、D、E、F类籼稻品种的平均NUEg 2001年分别为20.51、31.04、35.64、39.46、43.555、0.92 g g-1,2002年分别为24.33、31.61、35.83、39.06、43.515、0.00 g g-1;(2)不同NUEg类型籼稻品种间生物产量差异不大,但高NUEg类型籼稻品种抽穗期干物质积累量较小,抽穗后干物质生产量大且占生物产量的比例高;(3)不同NUEg类型籼稻品种间抽穗期的根干重和茎鞘干重占全株干重的比例差异不大,但NUEg水平越高的籼稻品种,其成熟期的根重和茎鞘重占全株干重的比例越小;(4)NUEg水平越高的籼稻品种,其抽穗期和成熟期的叶片干重占全株干重的比例越小,穗干重占全株干重的比例越大。