期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于近端线性组合的信号识别神经网络黑盒对抗攻击方法
1
作者 郭宇琦 李东阳 +1 位作者 闫镔 王林元 《计算机科学》 CSCD 北大核心 2024年第10期425-431,共7页
随着深度学习在无线通信领域特别是信号调制识别方向的广泛应用,神经网络易受对抗样本攻击的问题同样影响着无线通信的安全。针对无线信号在通信中难以实时获得神经网络反馈且只能访问识别结果的黑盒攻击场景,提出了一种基于近端线性组... 随着深度学习在无线通信领域特别是信号调制识别方向的广泛应用,神经网络易受对抗样本攻击的问题同样影响着无线通信的安全。针对无线信号在通信中难以实时获得神经网络反馈且只能访问识别结果的黑盒攻击场景,提出了一种基于近端线性组合的黑盒查询对抗攻击方法。该方法首先在数据集的一个子集上对每个原始信号样本进行近端线性组合,即在非常靠近原始信号的范围内与目标信号进行线性组合(加权系数不大于0.05),并将其输入待攻击网络以查询识别结果。通过统计网络对全部近端线性组合识别出错的数量,确定每类原始信号最容易受到线性组合影响的特定目标信号,将其称为最佳扰动信号。在攻击测试时,根据信号的类别选择对应最佳扰动信号执行近端线性组合,生成对抗样本。实验结果显示,该方法在选定子集上将每种调制类别的最佳扰动信号添加在全部数据集上能将神经网络识别准确率从94%降至50%,且相较于添加随机噪声攻击的扰动功率更小。此外,生成的对抗样本对于结构近似的神经网络具有一定迁移性。这种方法在统计查询后生成新的对抗样本时,易于实现且无需再进行黑盒查询。 展开更多
关键词 深度学习 对抗样本 信号识别 黑盒攻击 对抗信号
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部