期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于GAF与GoogLeNet的轴承故障诊断研究 被引量:10
1
作者 黄磊 马圣 曹永华 《机床与液压》 北大核心 2022年第1期193-198,共6页
为提高滚动轴承故障识别准确率,同时避免繁琐的频谱分析,提出基于GAF与GoogLeNet的轴承故障诊断模型。在实验室中采集滚动轴承正常、内环故障、外环故障和滚动体故障4种工况下的振动信号,利用EMD对振动信号进行分解并提取累积贡献90%的... 为提高滚动轴承故障识别准确率,同时避免繁琐的频谱分析,提出基于GAF与GoogLeNet的轴承故障诊断模型。在实验室中采集滚动轴承正常、内环故障、外环故障和滚动体故障4种工况下的振动信号,利用EMD对振动信号进行分解并提取累积贡献90%的分量;基于重叠采样原理,利用格拉姆算法将选择的EMD分量和原始振动信号处理为二维图片,并构建训练集、校验集和测试集;利用GoogLeNet模型对训练集进行特征学习,并将训练后的GoogLeNet模型用于测试轴承故障样本。结果表明:在GAF构建的数据集下,GoogLeNet模型能够使得轴承故障样本被较好地识别。 展开更多
关键词 轴承故障诊断 格拉姆算法 GoogLeNet模型
在线阅读 下载PDF
基于IGRSSA与IPSO-SVM的滚动轴承故障诊断方法 被引量:3
2
作者 黄磊 马圣 《轴承》 北大核心 2021年第10期60-66,共7页
为提高滚动轴承故障诊断的准确性,提出基于信息增益比的奇异谱分析(IGRSSA)与改进粒子群算法优化支持向量机(IPSO-SVM)的诊断模型。首先,引入信息增益比实现信号自适应重构;其次,采用动态惯性权重和梯度信息对粒子群算法进行改进并用于... 为提高滚动轴承故障诊断的准确性,提出基于信息增益比的奇异谱分析(IGRSSA)与改进粒子群算法优化支持向量机(IPSO-SVM)的诊断模型。首先,引入信息增益比实现信号自适应重构;其次,采用动态惯性权重和梯度信息对粒子群算法进行改进并用于优化支持向量机;然后,用IGRSSA对滚动轴承外圈故障、钢球故障和正常3种状态的振动信号进行降噪并提取时域特征值,使用平均影响值(MIV)筛选出最优特征参量作为后续故障信号特征数据集;最后,将BP神经网络、RBF神经网络、交叉验证优化的SVM、遗传算法优化的SVM和粒子群优化的SVM作为对比算法用于轴承故障诊断。30次有放回的随机抽样诊断结果表明,IPSO-SVM的平均诊断准确率达到97.72%,波动性和收敛误差均优于其他方法。 展开更多
关键词 滚动轴承 故障诊断 机器学习 支持向量机 谱分析 粒子群优化算法 主成分分析法
在线阅读 下载PDF
基于遗传算法与SOM网络的轴承故障诊断方法 被引量:1
3
作者 黄磊 马圣 曹永华 《机械设计与制造》 北大核心 2023年第12期97-100,105,共5页
轴承作为旋转机械的核心部件,开展其有关故障诊断方面的研究,有利于对旋转机械运行状态进行监测。针对旋转机械轴承故障的微弱信号容易淹没在其它部件的振动信号中,采用特征提取法,从滚动轴承正常、内环故障、外环故障和滚动体故障四种... 轴承作为旋转机械的核心部件,开展其有关故障诊断方面的研究,有利于对旋转机械运行状态进行监测。针对旋转机械轴承故障的微弱信号容易淹没在其它部件的振动信号中,采用特征提取法,从滚动轴承正常、内环故障、外环故障和滚动体故障四种工况的振动信号中提取时频域统计特征参数;并引入遗传算法消除时频域统计特征间的耦合性与共线性,提取9个时频域最优特征参数作为SOM网络的输入。研究结果表明:不同故障类型下,激活的SOM神经元不呈现明显性的差异性;根据文中神经元激活统计规则,表明SOM具有一定的故障辨识性,且对规则进行调整能够提升SOM网络的诊断效果。 展开更多
关键词 轴承 遗传算法 SOM网络 故障诊断 特征参数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部