期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
改进RBF模型的医院网络异常信息入侵意图预测 被引量:1
1
作者 彭建祥 《吉林大学学报(信息科学版)》 CAS 2023年第2期352-358,共7页
由于在医院网络异常信息入侵意图预测过程中,没有对医院网络数据降维处理,导致预测时间较长、预测准确率较低,为此提出基于改进RBF(Radical Basis Function)模型的医院网络异常信息入侵意图预测算法。通过相关性分析去除医院网络数据冗... 由于在医院网络异常信息入侵意图预测过程中,没有对医院网络数据降维处理,导致预测时间较长、预测准确率较低,为此提出基于改进RBF(Radical Basis Function)模型的医院网络异常信息入侵意图预测算法。通过相关性分析去除医院网络数据冗余并排序,采用RBF多层神经网络对排序后的数据属性进行选择,完成医院网络数据降维处理;根据数据预处理结果,构建贝叶斯攻击图,获取网络潜在入侵攻击路径;在该路径中计算警报关联强度,提取入侵警报证据数据,通过警报证据的监测判断信息入侵概率,获得医院网络的异常信息入侵意图的预测结果。实验结果表明,所提方法的网络异常信息入侵意图预测效率快、准确率高、整体效果好。 展开更多
关键词 信息异常入侵 入侵意图预测 改进RBF模型 贝叶斯攻击图 数据降维
在线阅读 下载PDF
深度学习模式下大数据特征集成分类算法
2
作者 彭建祥 《吉林大学学报(信息科学版)》 2025年第2期231-237,共7页
由于大数据通常来自不同的数据源,具有不同的格式、结构和质量,且其中包含大量的冗余特征,因而在进行特征集成分类时,这些因素均会影响数据分类精度,为此,设计一种深度学习模式下大数据特征集成分类算法。基于深度学习模式建立医疗大数... 由于大数据通常来自不同的数据源,具有不同的格式、结构和质量,且其中包含大量的冗余特征,因而在进行特征集成分类时,这些因素均会影响数据分类精度,为此,设计一种深度学习模式下大数据特征集成分类算法。基于深度学习模式建立医疗大数据特征提取模型,针对模型训练过程中会引入大量噪声,特征提取结果含有部分无关特征信息,影响特征集成分类结果的问题,采用堆叠稀疏降噪编码器抑制无关特征,即使用散度函数、贪婪算法找出训练最佳参数,运用损失函数将特征空间无关特征稀疏掉,得到实际数据特征。通过Auto-encoder网络搭建特征集成分类模型,借助类型约束函数、目标函数得出各类全局最佳集成中心,完成数据特征集成分类。实验结果表明,所提方法在医疗大数据的分类中得到很好效果,宏平均值在0.95以上,且分类速度快,表明所提方法的分类性能较好。 展开更多
关键词 深度学习 医疗大数据 特征集成 堆叠稀疏降噪编码器 集成中心
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部