期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于跨模态注意力机制和弱监督式对比学习的虚假新闻检测模型
1
作者 蔡松睿 张仕斌 +2 位作者 丁润宇 卢嘉中 黄源源 《信息安全研究》 北大核心 2025年第8期693-701,共9页
随着互联网和智能设备的广泛普及,社交媒体已成为新闻传播的主要平台.然而这也为虚假新闻的广泛传播提供了条件.在当前的社交媒体环境中,虚假新闻以文本、图片等多种模态存在,而现有的多模态虚假新闻检测技术通常未能充分挖掘不同模态... 随着互联网和智能设备的广泛普及,社交媒体已成为新闻传播的主要平台.然而这也为虚假新闻的广泛传播提供了条件.在当前的社交媒体环境中,虚假新闻以文本、图片等多种模态存在,而现有的多模态虚假新闻检测技术通常未能充分挖掘不同模态之间的内在联系,限制了检测模型的整体性能.为了解决这一问题,提出了一种基于跨模态注意力机制和弱监督式对比学习的虚假新闻检测模型.该模型利用预训练的BERT和ViT模型分别提取文本和图像特征,通过跨模态注意力机制有效融合多模态特征.同时,该模型引入了弱监督式对比学习,利用有效模态的预测结果作为监督信号指导对比学习过程,能够有效捕捉和利用文本与图像间的互补信息,从而提升了模型在多模态环境下的性能和鲁棒性.仿真实验表明,提出的虚假新闻检测模型在公开的Weibo17和Weibo21数据集上表现出色,与目前最先进的方法相比,准确率平均提升了1.17个百分点,F 1分数平均提升了1.66个百分点,验证了其在应对多模态虚假新闻检测任务中的有效性和可行性. 展开更多
关键词 虚假新闻检测 多模态融合 跨模态注意力机制 对比学习 深度学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部