目的探索基于T2WI的纹理分析和机器学习在区分肾乏脂血管平滑肌脂肪瘤(angiomyolipoma without visible fat,AMLwvf)和肾癌中的效能。材料与方法回顾分析80例肾脏肿瘤,包括肾AMLwvf、肾透明细胞癌、乳头状肾细胞癌和肾嫌色细胞癌各20例...目的探索基于T2WI的纹理分析和机器学习在区分肾乏脂血管平滑肌脂肪瘤(angiomyolipoma without visible fat,AMLwvf)和肾癌中的效能。材料与方法回顾分析80例肾脏肿瘤,包括肾AMLwvf、肾透明细胞癌、乳头状肾细胞癌和肾嫌色细胞癌各20例。软件勾画得到感兴趣容积,提取特征。克鲁斯卡尔-沃利斯检验提示肾癌亚型之间所有特征差异无统计学意义,故将肾癌亚型合并为肾癌组进行后续分析。单因素分析:通过非参数检验和ROC曲线寻找最佳特征,分析诊断效能。多特征建模:通过SPSS Modeler软件进行特征选择,构建并评价多个决策树C5.0模型。结果最佳特征为最小灰度,AUC为0.888,鉴别准确性为86.25%。最佳模型的AUC为0.950,诊断肾AMLwvf的敏感度为90.00%,特异度为100%,阳性预测值为100%,阴性预测值为96.77%,准确度为97.5%,交叉验证准确度为95.0%。结论基于T2WI的纹理分析和决策树C5.0模型可有效鉴别AMLwvf和肾癌。展开更多
文摘目的:基于机器学习的CT影像组学分析构建肝泡型棘球蚴病(HAE)边缘带浸润术前预测模型。方法:回顾性分析经病理确诊为HAE的92例患者,其中边缘带有浸润40例,边缘带无浸润52例,所有患者手术前均接受GE Discovery750HDCT扫描。从CT门脉期图像中逐层勾画病灶区域并提取影像组学特征,采用方差阈值法和SelectKBest法进行特征降维,并结合极限梯度增强树(XGBoost)机器学习分类器,对提取的特征进行统计建模。结果:共勾画92个VOI,每个VOI上提取了1409个影像组学特征,最终筛选出2个最优特征,分别为10Percentile和Gray Level Non Uniformity,结合XGBoost分类器构建的模型具有良好预测能力,其中边缘带有浸润在训练集上AUC为0.94,测试集AUC为0.73。结论:本研究引入机器学习技术预测HAE边缘带浸润状态,结果提示其可作为一种新型无创术前预测方法,所提取的2个CT影像标志物构建的模型具有良好预测准确度,为HAE的精准诊疗提供了新的评价方法。
文摘目的探索基于T2WI的纹理分析和机器学习在区分肾乏脂血管平滑肌脂肪瘤(angiomyolipoma without visible fat,AMLwvf)和肾癌中的效能。材料与方法回顾分析80例肾脏肿瘤,包括肾AMLwvf、肾透明细胞癌、乳头状肾细胞癌和肾嫌色细胞癌各20例。软件勾画得到感兴趣容积,提取特征。克鲁斯卡尔-沃利斯检验提示肾癌亚型之间所有特征差异无统计学意义,故将肾癌亚型合并为肾癌组进行后续分析。单因素分析:通过非参数检验和ROC曲线寻找最佳特征,分析诊断效能。多特征建模:通过SPSS Modeler软件进行特征选择,构建并评价多个决策树C5.0模型。结果最佳特征为最小灰度,AUC为0.888,鉴别准确性为86.25%。最佳模型的AUC为0.950,诊断肾AMLwvf的敏感度为90.00%,特异度为100%,阳性预测值为100%,阴性预测值为96.77%,准确度为97.5%,交叉验证准确度为95.0%。结论基于T2WI的纹理分析和决策树C5.0模型可有效鉴别AMLwvf和肾癌。