图像去噪作为图像处理过程一个重要的环节,直接影响图像进一步处理的效果.在图像去噪方法中,基于稀疏表示的K-means singular value decomposition(K-SVD)方法通过将图像表示成训练字典和稀疏系数两部分来有效分离噪声以达到去噪目的,...图像去噪作为图像处理过程一个重要的环节,直接影响图像进一步处理的效果.在图像去噪方法中,基于稀疏表示的K-means singular value decomposition(K-SVD)方法通过将图像表示成训练字典和稀疏系数两部分来有效分离噪声以达到去噪目的,具有很好的去噪效果.然而该算法包含了复杂矩阵运算,因而去噪速度较慢.本文提出的快速的K-SVD(SK-SVD)算法综合了均值滤波的速度快及K-SVD方法对图像细节处理好的优势,将噪声图像分为背景块集与内容块集两部分,对背景块集采用均值滤波方法去噪,内容块集用K-SVD算法去噪.为达到更高的去噪精度,首先对内容块集进行聚类,再对每一类分别训练稀疏字典去噪.实验结果表明,该算法在去除噪声时不但能很好地保留图像的细节,去噪效率也有显著的提高.展开更多
针对不锈钢焊缝缺陷特征提取存在主观单一性和客观不充分性等问题,提出一种融合迁移学习的AlexNet卷积神经网络模型,用于不锈钢焊缝缺陷的自动分类。首先,由于不锈钢焊缝缺陷数据较为缺乏,通过采用迁移学习对网络前3层冻结,减少网络对...针对不锈钢焊缝缺陷特征提取存在主观单一性和客观不充分性等问题,提出一种融合迁移学习的AlexNet卷积神经网络模型,用于不锈钢焊缝缺陷的自动分类。首先,由于不锈钢焊缝缺陷数据较为缺乏,通过采用迁移学习对网络前3层冻结,减少网络对输入数据量的要求;对后2层卷积层提取的特征信息批量归一化(batch normalization,BN),以加快网络的收敛速度;并使用带泄露线性整流(leaky rectified linear unit,LeakyReLU)函数对抑制神经元进行激活,从而提高模型的鲁棒性和特征提取能力。结果表明,该模型最终达到了95.12%的准确率,相比原结构识别精度提高了9.8%。验证了改进后方法能够对裂纹、气孔、夹渣、未熔合和未焊透5类不锈钢焊缝缺陷实现高精度分类。相比现有方法,其识别面更广,精度更高,具有一定的工程实践意义。展开更多
文摘图像去噪作为图像处理过程一个重要的环节,直接影响图像进一步处理的效果.在图像去噪方法中,基于稀疏表示的K-means singular value decomposition(K-SVD)方法通过将图像表示成训练字典和稀疏系数两部分来有效分离噪声以达到去噪目的,具有很好的去噪效果.然而该算法包含了复杂矩阵运算,因而去噪速度较慢.本文提出的快速的K-SVD(SK-SVD)算法综合了均值滤波的速度快及K-SVD方法对图像细节处理好的优势,将噪声图像分为背景块集与内容块集两部分,对背景块集采用均值滤波方法去噪,内容块集用K-SVD算法去噪.为达到更高的去噪精度,首先对内容块集进行聚类,再对每一类分别训练稀疏字典去噪.实验结果表明,该算法在去除噪声时不但能很好地保留图像的细节,去噪效率也有显著的提高.
文摘针对不锈钢焊缝缺陷特征提取存在主观单一性和客观不充分性等问题,提出一种融合迁移学习的AlexNet卷积神经网络模型,用于不锈钢焊缝缺陷的自动分类。首先,由于不锈钢焊缝缺陷数据较为缺乏,通过采用迁移学习对网络前3层冻结,减少网络对输入数据量的要求;对后2层卷积层提取的特征信息批量归一化(batch normalization,BN),以加快网络的收敛速度;并使用带泄露线性整流(leaky rectified linear unit,LeakyReLU)函数对抑制神经元进行激活,从而提高模型的鲁棒性和特征提取能力。结果表明,该模型最终达到了95.12%的准确率,相比原结构识别精度提高了9.8%。验证了改进后方法能够对裂纹、气孔、夹渣、未熔合和未焊透5类不锈钢焊缝缺陷实现高精度分类。相比现有方法,其识别面更广,精度更高,具有一定的工程实践意义。