期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于希尔伯特黄变换和深度卷积神经网络的房颤检测 被引量:3
1
作者 郭一楠 邵慧杰 +2 位作者 巩敦卫 李海泉 陈丽 《电子与信息学报》 EI CSCD 北大核心 2022年第1期99-106,共8页
房颤是一种常见的心律失常,其发病率会随着年龄增长而升高。因此,从心电(ECG)信号中尽早识别出房颤,有助于降低中风风险和心源性死亡率。为有效提高其检测准确率,该文提出一种基于希尔伯特黄变换(HHT)和深度卷积神经网络的房颤检测方法... 房颤是一种常见的心律失常,其发病率会随着年龄增长而升高。因此,从心电(ECG)信号中尽早识别出房颤,有助于降低中风风险和心源性死亡率。为有效提高其检测准确率,该文提出一种基于希尔伯特黄变换(HHT)和深度卷积神经网络的房颤检测方法。1维的时域心电信号通过希尔伯特黄变换,转换为时频域信号,旨在通过时频分析,丰富原始信号的特征。进而,采用DenseNet深度卷积神经网络来处理精细的时频图,并在迭代过程中选出最佳检测模型。该方法获得的最佳检测模型在麻省理工学院-贝斯以色列医院(MIT-BIH)和2017年生理信号竞赛(2017 PhysioNet Challenge)的房颤数据集上分别取得了99.11%和97.25%的检测准确率。此外,该文将希尔伯特黄变换与其他时频分析方法以及稠密网络(DenseNet)与其他卷积神经网络进行了对比。相比于其他检测方法,实验结果表明希尔伯特黄变换和深度卷积神经网络(DCNN)为房颤检测提供了更加准确的识别方式。 展开更多
关键词 心电信号 房颤 希尔伯特黄变换 深度卷积神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部