期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于双向长短时记忆单元和卷积神经网络的多语种文本分类方法
被引量:
11
1
作者
孟先艳
崔荣一
+1 位作者
赵亚慧
方明洙
《计算机应用研究》
CSCD
北大核心
2020年第9期2669-2673,共5页
针对日渐丰富的多语种文本数据,为了实现对同一类别体系下不同语种的文本分类,充分发挥多语种文本信息的价值,提出一种结合双向长短时记忆单元和卷积神经网络的多语种文本分类模型BiLSTM-CNN模型。针对每个语种,利用双向长短时记忆神经...
针对日渐丰富的多语种文本数据,为了实现对同一类别体系下不同语种的文本分类,充分发挥多语种文本信息的价值,提出一种结合双向长短时记忆单元和卷积神经网络的多语种文本分类模型BiLSTM-CNN模型。针对每个语种,利用双向长短时记忆神经网络提取文本特征,并引入卷积神经网络进行特征优化,获得各语种更深层次的文本表示,最后将各语种的文本表示级联输入到softmax函数预测类别。在中英朝科技文献平行数据集上进行了实验验证,结果表明,该方法相比于基准方法分类正确率提高了4%,且对任一语种文本均能正确分类,具有良好的扩展性。
展开更多
关键词
多语种文本分类
长短时记忆单元
卷积神经网络
在线阅读
下载PDF
职称材料
题名
基于双向长短时记忆单元和卷积神经网络的多语种文本分类方法
被引量:
11
1
作者
孟先艳
崔荣一
赵亚慧
方明洙
机构
延边
大学计算机科学与技术学科智能
信息
处理研究室
延边朝鲜族自治州科技信息服务中心
出处
《计算机应用研究》
CSCD
北大核心
2020年第9期2669-2673,共5页
基金
国家语委“十三五”科研规划项目(YB135-76)
延边大学外国语言文学世界一流学科建设科研项目(18YLPY13)。
文摘
针对日渐丰富的多语种文本数据,为了实现对同一类别体系下不同语种的文本分类,充分发挥多语种文本信息的价值,提出一种结合双向长短时记忆单元和卷积神经网络的多语种文本分类模型BiLSTM-CNN模型。针对每个语种,利用双向长短时记忆神经网络提取文本特征,并引入卷积神经网络进行特征优化,获得各语种更深层次的文本表示,最后将各语种的文本表示级联输入到softmax函数预测类别。在中英朝科技文献平行数据集上进行了实验验证,结果表明,该方法相比于基准方法分类正确率提高了4%,且对任一语种文本均能正确分类,具有良好的扩展性。
关键词
多语种文本分类
长短时记忆单元
卷积神经网络
Keywords
multilingual text categorization
long short-term memory
convolutional neural network
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于双向长短时记忆单元和卷积神经网络的多语种文本分类方法
孟先艳
崔荣一
赵亚慧
方明洙
《计算机应用研究》
CSCD
北大核心
2020
11
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部