利用变量节点符号可靠度在迭代过程中的分布特征,提出了一种基于可靠度差值特征的自适应判决多元低密度奇偶校验(Low Density Parity Check, LDPC)译码算法。整个迭代过程划分为两个阶段,针对不同阶段节点可靠度的差值特征分别采用不同...利用变量节点符号可靠度在迭代过程中的分布特征,提出了一种基于可靠度差值特征的自适应判决多元低密度奇偶校验(Low Density Parity Check, LDPC)译码算法。整个迭代过程划分为两个阶段,针对不同阶段节点可靠度的差值特征分别采用不同的判决策略:前期阶段,采用传统的基于最大可靠度的判决策略;后期阶段,根据最大、次大可靠度之间的差值特征,设计自适应的码元符号判决策略。仿真结果表明,所提算法在相当的译码复杂度前提下,能获得0.15~0.4 dB的性能增益。同时,对于列重较小的LDPC码,具有更低的译码错误平层。展开更多
随着通信技术的发展,通信终端逐渐采用软件的方式来兼容多种通信制式和协议。针对以计算机中央处理器(CPU)作为运算单元的传统软件无线电架构,无法满足高速无线通信系统如多进多出(MIMO)等宽带数据的吞吐率要求问题,提出了一种基于图形...随着通信技术的发展,通信终端逐渐采用软件的方式来兼容多种通信制式和协议。针对以计算机中央处理器(CPU)作为运算单元的传统软件无线电架构,无法满足高速无线通信系统如多进多出(MIMO)等宽带数据的吞吐率要求问题,提出了一种基于图形处理器(GPU)的低密度奇偶校验(LDPC)码译码器的加速方法。首先,根据GPU并行加速异构计算在GNU Radio 4G/5G物理层信号处理模块中的加速表现的理论分析,采用了并行效率更高的分层归一化最小和(LNMS)算法;其次,通过使用全局同步策略、合理分配GPU内存空间以及流并行机制等方法减少了译码器的译码时延,同时配合GPU多线程并行技术对LDPC码的译码流程进行了并行优化;最后,在软件无线电平台上对提出的GPU加速译码器进行了实现与验证,并分析了该并行译码器的误码率性能和加速性能的瓶颈。实验结果表明,与传统的CPU串行码处理方式相比,CPU+GPU异构平台对LDPC码的译码速率可提升至原来的200倍左右,译码器的吞吐量可以达到1 Gb/s以上,特别是在大规模数据的情况下对传统译码器的译码性有着较大的提升。展开更多
文摘随着通信技术的发展,通信终端逐渐采用软件的方式来兼容多种通信制式和协议。针对以计算机中央处理器(CPU)作为运算单元的传统软件无线电架构,无法满足高速无线通信系统如多进多出(MIMO)等宽带数据的吞吐率要求问题,提出了一种基于图形处理器(GPU)的低密度奇偶校验(LDPC)码译码器的加速方法。首先,根据GPU并行加速异构计算在GNU Radio 4G/5G物理层信号处理模块中的加速表现的理论分析,采用了并行效率更高的分层归一化最小和(LNMS)算法;其次,通过使用全局同步策略、合理分配GPU内存空间以及流并行机制等方法减少了译码器的译码时延,同时配合GPU多线程并行技术对LDPC码的译码流程进行了并行优化;最后,在软件无线电平台上对提出的GPU加速译码器进行了实现与验证,并分析了该并行译码器的误码率性能和加速性能的瓶颈。实验结果表明,与传统的CPU串行码处理方式相比,CPU+GPU异构平台对LDPC码的译码速率可提升至原来的200倍左右,译码器的吞吐量可以达到1 Gb/s以上,特别是在大规模数据的情况下对传统译码器的译码性有着较大的提升。