In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradien...In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradient method.Under the condition of standard Wolfe line search,the proposed search direction is the descent direction.For general nonlinear functions,the method is globally convergent.Finally,numerical results show that the proposed method is efficient.展开更多
针对正余弦算法(Sine Cosine Algorithm,SCA)在解决优化问题时存在收敛速度慢、计算精度低等缺陷,本文提出一种融合疯狂秃鹰搜索算法的混沌正余弦算法(Chaotic Sine Cosine Algorithm based on Crazy Bald-eagle Search,CSCA-CBS)。CSCA...针对正余弦算法(Sine Cosine Algorithm,SCA)在解决优化问题时存在收敛速度慢、计算精度低等缺陷,本文提出一种融合疯狂秃鹰搜索算法的混沌正余弦算法(Chaotic Sine Cosine Algorithm based on Crazy Bald-eagle Search,CSCA-CBS)。CSCA-CBS采用结合Logistic与Tent的混合混沌映射进行种群初始化,从而获得更加均匀和多样的初始种群;受秃鹰搜索算法所启发,CSCA-CBS采用带有疯狂算子的秃鹰搜索策略,该策略能够提升CSCA-CBS的全局探索能力;为了在迭代后期避免陷入局部最优区域,CSCA-CBS使用逐维反向柯西变异策略对种群进行有规律的扰动,极大地集成了反向学习和柯西变异的优势。在15个基准函数上进行的仿真实验结果表明,CSCA-CBS在计算代价和可靠性、解的质量分析以及收敛性能等方面优于多种先进的SCA变体和非SCA基准算法。此外,土壤水分特征曲线的参数反演实验进一步验证了CSCA-CBS的实用性和有效性。展开更多
基金Supported by the Science and Technology Project of Guangxi(Guike AD23023002)。
文摘In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradient method.Under the condition of standard Wolfe line search,the proposed search direction is the descent direction.For general nonlinear functions,the method is globally convergent.Finally,numerical results show that the proposed method is efficient.
文摘针对正余弦算法(Sine Cosine Algorithm,SCA)在解决优化问题时存在收敛速度慢、计算精度低等缺陷,本文提出一种融合疯狂秃鹰搜索算法的混沌正余弦算法(Chaotic Sine Cosine Algorithm based on Crazy Bald-eagle Search,CSCA-CBS)。CSCA-CBS采用结合Logistic与Tent的混合混沌映射进行种群初始化,从而获得更加均匀和多样的初始种群;受秃鹰搜索算法所启发,CSCA-CBS采用带有疯狂算子的秃鹰搜索策略,该策略能够提升CSCA-CBS的全局探索能力;为了在迭代后期避免陷入局部最优区域,CSCA-CBS使用逐维反向柯西变异策略对种群进行有规律的扰动,极大地集成了反向学习和柯西变异的优势。在15个基准函数上进行的仿真实验结果表明,CSCA-CBS在计算代价和可靠性、解的质量分析以及收敛性能等方面优于多种先进的SCA变体和非SCA基准算法。此外,土壤水分特征曲线的参数反演实验进一步验证了CSCA-CBS的实用性和有效性。