虽然异构计算系统的应用可以加快神经网络参数的处理,但系统功耗也随之剧增。良好的功耗预测方法是异构系统优化功耗和处理多类型工作负载的基础,基于此,通过改进多层感知机-注意力模型,提出一种面向CPU/GPU异构计算系统多类型工作负载...虽然异构计算系统的应用可以加快神经网络参数的处理,但系统功耗也随之剧增。良好的功耗预测方法是异构系统优化功耗和处理多类型工作负载的基础,基于此,通过改进多层感知机-注意力模型,提出一种面向CPU/GPU异构计算系统多类型工作负载的功耗预测算法。首先,考虑服务器功耗与系统特征,建立一种基于特征的工作负载功耗模型;其次,针对现有的功耗预测算法不能解决系统特征与系统功耗之间的长程依赖的问题,提出一种改进的基于多层感知机-注意力模型的功耗预测算法Prophet,该算法改进多层感知机实现各个时刻的系统特征的提取,并使用注意力机制综合这些特征,从而有效解决系统特征与系统功耗之间的长程依赖问题;最后,在实际系统中开展相关实验,将所提算法分别与MLSTM_PM(Power consumption Model based on Multi-layer Long Short-Term Memory)和ENN_PM(Power consumption Model based on Elman Neural Network)等功耗预测算法对比。实验结果表明,Prophet具有较高的预测精准性,与MLSTM_PM算法相比,在工作负载blk、memtest和busspd上将平均相对误差(MRE)分别降低了1.22、1.01和0.93个百分点,并且具有较低的复杂度,表明了所提算法的有效性及可行性。展开更多
大部分现有的用于预测环状RNA(circRNA)与疾病之间关联关系的计算模型通常使用circRNA和疾病相关数据等生物学知识,配合已知的circRNA-疾病关联信息对来挖掘出潜在的关联信息。然而这些模型受已知关联构成的网络稀疏性、负样本过少等固...大部分现有的用于预测环状RNA(circRNA)与疾病之间关联关系的计算模型通常使用circRNA和疾病相关数据等生物学知识,配合已知的circRNA-疾病关联信息对来挖掘出潜在的关联信息。然而这些模型受已知关联构成的网络稀疏性、负样本过少等固有问题的影响,导致预测性能不佳。因此,在图自动编码器基础上引入归纳式矩阵补全及自注意力机制进行二阶段融合,以实现circRNA-疾病关联预测,由此构建的模型叫GIS-CDA(Graph auto-encoder combining Inductive matrix complementation and Self-attention mechanism for predicting Circ RNA-Disease Association)。首先,计算circRNA集成和疾病集成的相似性,并利用图自动编码器学习circRNA和疾病的潜在特征,以获得低维表征;接着,将学习到的特征输入归纳式矩阵补全,以提高节点之间的相似性和依赖性;然后,将circRNA特征矩阵和疾病特征矩阵整合为circRNA-疾病特征矩阵,以增强预测的稳定性和精确性;最后,引入自注意力机制,从特征矩阵中提取重要特征,并减少对其他生物信息的依赖。五折交叉和十折交叉验证的结果显示:GIS-CDA获得的平均接收者操作特征曲线下面积(AUROC)值分别为0.9303和0.9393,前者比基于KATZ测度的人类circRNA-疾病关联预测模型(KATZHCDA)、基于深度矩阵分解方法的circRNA-疾病关联(DMFCDA)预测模型、RWR(Random Walk with Restart)和基于加速归纳式矩阵补全的circRNA-疾病关联(SIMCCDA)预测模型分别高出了13.19、35.73、13.28和5.01个百分点;GIS-CDA的精确率-召回率曲线下面积(AUPR)值分别为0.2271和0.2340,前者比上述对比模型分别高出了21.72、22.43、21.96和13.86个百分点。此外,在circRNADisease、circ2Disease和circ R2Disease数据集上的消融实验和案例研究进一步验证了GIS-CDA在预测circRNA-疾病的潜在关联方面具有较好的性能。展开更多
文摘虽然异构计算系统的应用可以加快神经网络参数的处理,但系统功耗也随之剧增。良好的功耗预测方法是异构系统优化功耗和处理多类型工作负载的基础,基于此,通过改进多层感知机-注意力模型,提出一种面向CPU/GPU异构计算系统多类型工作负载的功耗预测算法。首先,考虑服务器功耗与系统特征,建立一种基于特征的工作负载功耗模型;其次,针对现有的功耗预测算法不能解决系统特征与系统功耗之间的长程依赖的问题,提出一种改进的基于多层感知机-注意力模型的功耗预测算法Prophet,该算法改进多层感知机实现各个时刻的系统特征的提取,并使用注意力机制综合这些特征,从而有效解决系统特征与系统功耗之间的长程依赖问题;最后,在实际系统中开展相关实验,将所提算法分别与MLSTM_PM(Power consumption Model based on Multi-layer Long Short-Term Memory)和ENN_PM(Power consumption Model based on Elman Neural Network)等功耗预测算法对比。实验结果表明,Prophet具有较高的预测精准性,与MLSTM_PM算法相比,在工作负载blk、memtest和busspd上将平均相对误差(MRE)分别降低了1.22、1.01和0.93个百分点,并且具有较低的复杂度,表明了所提算法的有效性及可行性。
文摘大部分现有的用于预测环状RNA(circRNA)与疾病之间关联关系的计算模型通常使用circRNA和疾病相关数据等生物学知识,配合已知的circRNA-疾病关联信息对来挖掘出潜在的关联信息。然而这些模型受已知关联构成的网络稀疏性、负样本过少等固有问题的影响,导致预测性能不佳。因此,在图自动编码器基础上引入归纳式矩阵补全及自注意力机制进行二阶段融合,以实现circRNA-疾病关联预测,由此构建的模型叫GIS-CDA(Graph auto-encoder combining Inductive matrix complementation and Self-attention mechanism for predicting Circ RNA-Disease Association)。首先,计算circRNA集成和疾病集成的相似性,并利用图自动编码器学习circRNA和疾病的潜在特征,以获得低维表征;接着,将学习到的特征输入归纳式矩阵补全,以提高节点之间的相似性和依赖性;然后,将circRNA特征矩阵和疾病特征矩阵整合为circRNA-疾病特征矩阵,以增强预测的稳定性和精确性;最后,引入自注意力机制,从特征矩阵中提取重要特征,并减少对其他生物信息的依赖。五折交叉和十折交叉验证的结果显示:GIS-CDA获得的平均接收者操作特征曲线下面积(AUROC)值分别为0.9303和0.9393,前者比基于KATZ测度的人类circRNA-疾病关联预测模型(KATZHCDA)、基于深度矩阵分解方法的circRNA-疾病关联(DMFCDA)预测模型、RWR(Random Walk with Restart)和基于加速归纳式矩阵补全的circRNA-疾病关联(SIMCCDA)预测模型分别高出了13.19、35.73、13.28和5.01个百分点;GIS-CDA的精确率-召回率曲线下面积(AUPR)值分别为0.2271和0.2340,前者比上述对比模型分别高出了21.72、22.43、21.96和13.86个百分点。此外,在circRNADisease、circ2Disease和circ R2Disease数据集上的消融实验和案例研究进一步验证了GIS-CDA在预测circRNA-疾病的潜在关联方面具有较好的性能。