随着射频识别(Radio Frequency Identification,RFID)技术的发展,人们对其应用的要求越来越高,在阅读器部署方面的研究也逐渐深入。为了解决规定区域内RFID阅读器位置规划问题,在划定的区域内,以标签覆盖率、阅读器间的碰撞干扰、负载...随着射频识别(Radio Frequency Identification,RFID)技术的发展,人们对其应用的要求越来越高,在阅读器部署方面的研究也逐渐深入。为了解决规定区域内RFID阅读器位置规划问题,在划定的区域内,以标签覆盖率、阅读器间的碰撞干扰、负载均衡为目标来建立数学优化模型,在白鲸算法的基础上提出了一种改进型白鲸算法。首先,针对标准白鲸算法存在易陷入局部最优、丢失次优解的缺陷,提出了一种更新精英群体机制;其次,为了增强算法的探索能力,加入了反向学习策略;最后,运用该算法来解决RFID网络规划问题。通过在一定环境中放置不同数量集群和随机分布的标签,将改进型白鲸算法与粒子群算法、灰狼算法和标准白鲸算法进行对比。仿真结果表明,在相同环境下,改进型白鲸算法的性能相比粒子群算法平均提高了21.1%,比灰狼算法提高了28.5%,比白鲸算法提高了3.3%,说明该算法相比其他3种算法在搜索精度上具有更好的性能,并通过阅读器优化部署测试,验证了该应用的有效性和可行性。展开更多
随着物联网(Internet of Things,IoT)技术的快速发展,出现了大量具有不同功能的设备(如多种带不同传感器的智能家居设备、移动智能交通设备、智能物流或仓储管理设备等),它们相互连接,被广泛应用于智能城市、智慧工厂等领域。然而,这些...随着物联网(Internet of Things,IoT)技术的快速发展,出现了大量具有不同功能的设备(如多种带不同传感器的智能家居设备、移动智能交通设备、智能物流或仓储管理设备等),它们相互连接,被广泛应用于智能城市、智慧工厂等领域。然而,这些物联网设备的处理能力有限,很难满足延迟敏感、计算密集型应用的需求。移动边缘计算(Mobile Edge Computing,MEC)的出现有效解决了这一问题。物联网设备可以将任务卸载到MEC服务器上,借助它们完成相应的计算任务。这些服务器通常由网络运营商部署在网络边缘,即靠近用户端的网络接入层,用于汇聚用户网络的网络层面。某一段时间内,物联网设备可能处于多个MEC服务器的覆盖区域中,多个设备共享服务器有限的计算和通信资源。在这个复杂环境下,制定一个任务卸载和资源分配方案,使得任务完成的时延或物联网设备的能耗达到最优化,是一个NP-难问题。目前,已有许多工作对这一问题进行了研究,并取得了一定的成果,但在实际的应用中仍面临着一些问题。为了更深入地推进该领域的研究,文中对近几年的最新研究成果进行了分析、归纳和总结,对比分析了它们的优缺点,并对未来的工作进行了展望。展开更多
文摘随着射频识别(Radio Frequency Identification,RFID)技术的发展,人们对其应用的要求越来越高,在阅读器部署方面的研究也逐渐深入。为了解决规定区域内RFID阅读器位置规划问题,在划定的区域内,以标签覆盖率、阅读器间的碰撞干扰、负载均衡为目标来建立数学优化模型,在白鲸算法的基础上提出了一种改进型白鲸算法。首先,针对标准白鲸算法存在易陷入局部最优、丢失次优解的缺陷,提出了一种更新精英群体机制;其次,为了增强算法的探索能力,加入了反向学习策略;最后,运用该算法来解决RFID网络规划问题。通过在一定环境中放置不同数量集群和随机分布的标签,将改进型白鲸算法与粒子群算法、灰狼算法和标准白鲸算法进行对比。仿真结果表明,在相同环境下,改进型白鲸算法的性能相比粒子群算法平均提高了21.1%,比灰狼算法提高了28.5%,比白鲸算法提高了3.3%,说明该算法相比其他3种算法在搜索精度上具有更好的性能,并通过阅读器优化部署测试,验证了该应用的有效性和可行性。
文摘随着物联网(Internet of Things,IoT)技术的快速发展,出现了大量具有不同功能的设备(如多种带不同传感器的智能家居设备、移动智能交通设备、智能物流或仓储管理设备等),它们相互连接,被广泛应用于智能城市、智慧工厂等领域。然而,这些物联网设备的处理能力有限,很难满足延迟敏感、计算密集型应用的需求。移动边缘计算(Mobile Edge Computing,MEC)的出现有效解决了这一问题。物联网设备可以将任务卸载到MEC服务器上,借助它们完成相应的计算任务。这些服务器通常由网络运营商部署在网络边缘,即靠近用户端的网络接入层,用于汇聚用户网络的网络层面。某一段时间内,物联网设备可能处于多个MEC服务器的覆盖区域中,多个设备共享服务器有限的计算和通信资源。在这个复杂环境下,制定一个任务卸载和资源分配方案,使得任务完成的时延或物联网设备的能耗达到最优化,是一个NP-难问题。目前,已有许多工作对这一问题进行了研究,并取得了一定的成果,但在实际的应用中仍面临着一些问题。为了更深入地推进该领域的研究,文中对近几年的最新研究成果进行了分析、归纳和总结,对比分析了它们的优缺点,并对未来的工作进行了展望。