期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
基于全局一致的非配对低照度图像增强方法
1
作者 江泽涛 黄钦阳 +3 位作者 张惠鹃 金鑫 黄景帆 廖培期 《计算机研究与发展》 北大核心 2025年第4期876-887,共12页
由于低照度配对图像的制作成本昂贵且难于制作,而非配对低照度图像增强方法不依赖配对图像数据因而更有实用价值,但其缺乏详细的监督信号导致输出图像存在全局曝光不一致、色彩失真和大量噪声等视觉退化问题,在实际应用中存在挑战.为了... 由于低照度配对图像的制作成本昂贵且难于制作,而非配对低照度图像增强方法不依赖配对图像数据因而更有实用价值,但其缺乏详细的监督信号导致输出图像存在全局曝光不一致、色彩失真和大量噪声等视觉退化问题,在实际应用中存在挑战.为了更好地满足实用需求,提出一种基于全局一致的非配对低照度增强方法(unpaired low-light enhancement method based on global consistency,GCLLE).首先,该方法通过全局一致性保持模块(global consistency preserving module,GCPM)将编码器和解码器中相同尺度的特征重新建模并融合以矫正不同尺度的上下文信息,保证输出图像全局曝光调整一致性和全局结构一致性,使得图像亮度分布均匀并避免扭曲和失真;利用局部平滑和调制模块(local smoothing and modulation module,LSMM)学习一组局部的低阶曲线映射,为图像提供更宽的动态范围并进一步提高质量,实现真实和自然的增强效果;提出使用双路池化融合深层特征的深度特征强化模块(deep feature enhancement module,DFEM)压缩无关信息并突出更有区分度的编码特征,减少了不准确信息并使得解码器更容易捕获图像中的低强度信号,保留图像更多细节.不同于关注配对图像像素间一对一映射关系的配对增强方法,GCLLE通过缩小低照度图像与非配对正常照度图像之间的风格差异实现增强.在MIT和LSRW数据集上进行大量的实验,结果表明所提方法在多个客观指标上超过了现有典型低照度增强方法,具有更好的增强效果. 展开更多
关键词 低照度图像 图像增强 非配对学习 生成对抗网络 深度学习
在线阅读 下载PDF
基于ICFIE-YOLO的低照度图像目标检测方法
2
作者 秦嘉奇 江泽涛 雷晓春 《电子学报》 北大核心 2025年第2期514-526,共13页
低照度环境下获取的图像往往亮度低、对比度低、光照不均匀,从而造成图像特征变弱及模糊难于提取,同时在有限提取的特征中也存在大量噪声信息,导致目标难于检测识别,因而现有低照度目标检测成果极少.针对低照度目标特征难于提取及特征... 低照度环境下获取的图像往往亮度低、对比度低、光照不均匀,从而造成图像特征变弱及模糊难于提取,同时在有限提取的特征中也存在大量噪声信息,导致目标难于检测识别,因而现有低照度目标检测成果极少.针对低照度目标特征难于提取及特征空间噪声大的问题,本文提出一种基于光照矫正与特征交互增强(Illumination Correction and Feature Interacted Enhancement,ICFIE-YOLO)网络的低照度目标检测方法.该方法首先利用提出的ICFIEYOLO内部多尺度光照矫正网络(Multi Scale Illumination Correction Network,MSICN)对低照度图像进行光照矫正,突出隐藏在图像背景中目标的模糊特征,使特征提取模块能更好地提取到目标特征;其次,为充分利用有效特征信息,过滤特征图中的噪声干扰,提出特征交互增强(Feature Interacted Enhancement,FIE)检测头,通过特征注意力交互方式实现特征增强,建立低照度图像中各个区域特征之间的空间关联和语义关联,从而抑制噪声对有效特征的干扰,实现降噪效果;最后,在增强特征及去除噪声的基础上用改进的检测头实现高精度目标检测.在ExDark和DarkFace数据集上的实验表明,所提方法较主流目标检测方法mAP提高2.1个百分点以上,较现有低照度目标检测方法召回率提高4.2个百分点以上,同时召回率较基线模型提高了2.6个百分点,所提方法具有较好的泛化性. 展开更多
关键词 目标检测 低照度 光照矫正 特征去噪 特征增强
在线阅读 下载PDF
基于CRTNet的低照度图像增强方法
3
作者 江泽涛 黄景帆 +2 位作者 朱文才 黄钦阳 金鑫 《应用科学学报》 CAS CSCD 北大核心 2024年第6期934-946,共13页
针对低照度环境下获取的图像与颜色失真问题,该文结合了通道注意力和空间注意力的机制,提出了一种基于颜色还原Transformer网络(color restoraration Transformer networks, CRTNet)的低照度图像增强方法。CRTNet由颜色注意力模块(color... 针对低照度环境下获取的图像与颜色失真问题,该文结合了通道注意力和空间注意力的机制,提出了一种基于颜色还原Transformer网络(color restoraration Transformer networks, CRTNet)的低照度图像增强方法。CRTNet由颜色注意力模块(color attention module, CAM)、颜色映射模块(color map module, CMM)和顺序增强结构组成。首先,CAM分为颜色通道注意力模块和颜色空间注意力模块两部分,利用Transformer的全局信息捕捉能力,颜色通道注意力模块关注有意义的颜色通道并赋予更高权重,生成通道注意力向量,颜色空间注意力模块使用三层卷积结构,关注高维空间中的空间细节信息,生成空间注意力权重图;其次,CMM通过线性拟合过程提取图像高维特征,对64D空间中的特征进行通道和空间两个维度的缩放和平移获得图像全局信息和细节信息,并与原始图像特征相结合,补充原始图像特征中颜色、亮度、对比度和细节等信息,实现颜色增强;最后,采用顺序增强结构,将CMM的输出作为输入重复进行3次CAM和CMM操作,以拟合更高阶的函数映射,实现低照度图像的有效增强。对公共数据集的实验和用户研究表明,所提方法在定量测量、细节与颜色复原方面取得了最好的结果。 展开更多
关键词 低照度增强 轻量级图像增强 颜色恢复 图像细节增强 TRANSFORMER
在线阅读 下载PDF
基于外部先验和自先验注意力的图像描述生成方法 被引量:2
4
作者 李永杰 钱艺 文益民 《计算机科学》 CSCD 北大核心 2024年第7期214-220,共7页
图像描述是一种结合计算机视觉和自然语言处理的跨模态任务,旨在理解图像内容并生成恰当的句子。现有的图像描述方法通常使用自注意力机制来捕获样本内的长距离依赖关系,但这种方式不仅忽略了样本间的潜在相关性,而且缺乏对先验知识的利... 图像描述是一种结合计算机视觉和自然语言处理的跨模态任务,旨在理解图像内容并生成恰当的句子。现有的图像描述方法通常使用自注意力机制来捕获样本内的长距离依赖关系,但这种方式不仅忽略了样本间的潜在相关性,而且缺乏对先验知识的利用,导致生成内容与参考描述存在一定差异。针对上述问题,文中提出了一种基于外部先验和自先验注意力(External Prior and Self-prior Attention, EPSPA)的图像描述方法。其中,外部先验模块能够隐式地考虑到样本间的潜在相关性进而减少来自其他样本的干扰信息。同时,自先验注意力能够充分利用上一层的注意力权重来模拟先验知识,使其指导模型进行特征提取。在公开数据集上使用多种指标对EPSPA进行评估,实验结果表明该方法能够在保持低参数量的前提下表现出优于现有方法的性能。 展开更多
关键词 图像描述 自注意力机制 潜在相关性 外部先验模块 自先验注意力
在线阅读 下载PDF
融合结构化卷积和双重注意力机制的轻量级眼底图像分割网络 被引量:3
5
作者 汪华登 刘金 +4 位作者 黎兵兵 潘细朋 刘振丙 蓝如师 罗笑南 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第5期760-774,共15页
眼底血管图像的自动分割对于多种眼科疾病的计算机辅助诊断具有重要作用.针对血管的尺度差异和图像噪声导致眼底血管图像分割困难、使用单一尺度卷积运算的深度学习方法获取的特征感受野有限,以及现有的方法复杂度过高的问题,提出一个... 眼底血管图像的自动分割对于多种眼科疾病的计算机辅助诊断具有重要作用.针对血管的尺度差异和图像噪声导致眼底血管图像分割困难、使用单一尺度卷积运算的深度学习方法获取的特征感受野有限,以及现有的方法复杂度过高的问题,提出一个融合结构化卷积和双重注意力机制的轻量级眼底图像分割网络.通过编码器增强、减少下采样次数和特征深度的编码-解码网络设计,实现参数量只有0.63M的轻量化网络.在编码阶段,提出一种结构化卷积方法,有效地避免了网络训练过拟合,提高了网络捕获差异化血管特征的能力;在解码阶段,采用基于空间和通道的双重注意力机制,使网络更加关注血管特征的上下文和几何空间信息,抑制病变等噪声的干扰.在DRIVE,CHASE_DB1和STARE数据集上进行实验的结果表明,所提网络图像分割的准确率分别为96.92%,97.57%和97.51%,灵敏度分别为83.68%,84.99%和84.87%,受试者曲线下的面积(AUC)分别为98.67%,99.05%和99.02%;并通过在DRIVE和STARE数据集上的交叉训练,验证了该网络的泛化能力. 展开更多
关键词 眼底图像分割 编码-解码网络 轻量级网络 结构化卷积 双重注意力机制
在线阅读 下载PDF
基于抽象关系场景图的图像情感识别
6
作者 康博 钱艺 文益民 《智能系统学报》 CSCD 北大核心 2024年第2期335-343,共9页
图像情感识别是通过分析视觉刺激来预测人类情感的抽象过程。现有方法大多缺乏对对象间关系以及对象与场景间相互作用的关注,并且对象间复杂多样的关系难以得到充分利用,进而导致难以正确对图像情感进行预测。为解决上述问题,提出一种... 图像情感识别是通过分析视觉刺激来预测人类情感的抽象过程。现有方法大多缺乏对对象间关系以及对象与场景间相互作用的关注,并且对象间复杂多样的关系难以得到充分利用,进而导致难以正确对图像情感进行预测。为解决上述问题,提出一种基于抽象关系场景图的图像情感识别方法。首先,构建对象和属性检测器来提取图像中对象及其属性的特征。其次,使用对象特征推理对象间的亲密度和抽象关系特征,进而构建抽象关系场景图。再次,提出抽象关系图卷积网络来推理抽象关系场景图。最后,设计渐进式注意力机制对多个对象特征进行融合,以得到图像的整体对象特征。在FI、EmotionRoI和Twitter I公开数据集上的试验结果表明,该方法的分类准确率优于现有方法。 展开更多
关键词 图像情感识别 抽象关系 场景图 图卷积网络 注意力机制 卷积神经网络 视觉情感分析 深度学习
在线阅读 下载PDF
基于频域和空域多特征融合的深度伪造检测方法 被引量:1
7
作者 董佳乐 邓正杰 +1 位作者 李喜艳 王诗韵 《图学学报》 北大核心 2025年第1期104-113,共10页
在当今社会,面部伪造技术的迅速发展对社会安全构成了巨大挑战,尤其是在深度学习技术被广泛应用于生成逼真的伪造视频的背景下。这些高质量的伪造内容不仅威胁到个人隐私,还可能被用于不法活动。面对这一挑战,传统的基于单一特征的伪造... 在当今社会,面部伪造技术的迅速发展对社会安全构成了巨大挑战,尤其是在深度学习技术被广泛应用于生成逼真的伪造视频的背景下。这些高质量的伪造内容不仅威胁到个人隐私,还可能被用于不法活动。面对这一挑战,传统的基于单一特征的伪造检测方法已经难以满足检测需求。因此,提出了一种基于频域和空域多特征融合的深度伪造检测方法,以提高面部伪造内容的检测准确率和泛化能力。并将频域动态划分为3个频带来提取在空域中无法挖掘的伪造伪影;对空域使用EfficientNet_b4网络和Transformer架构多尺度划分图像块来计算不同块的差异、根据上下图像块之间的一致性信息来进行检测以及捕获更精细的伪造特征信息;最后使用查询-键-值机制的融合块,将上述中的频域和空域的方法进行融合,从而更全面地挖掘到2个域中的特征信息,提升伪造检测的准确性和迁移性。大量的实验结果显示该方法有效,其性能明显优于传统深度伪造检测方法。 展开更多
关键词 深度伪造检测 EfficientNet_b4网络 频域特征 空域特征 特征融合
在线阅读 下载PDF
一种基于MR-VAE的低照度图像增强方法 被引量:17
8
作者 江泽涛 伍旭 张少钦 《计算机学报》 EI CSCD 北大核心 2020年第7期1328-1339,共12页
针对低照度图像多重失真特点(低亮度、多噪声和模糊等),本文基于变分自编码器提出了一种多重构变分自编码器(Multiple Reconstruction-Variational AutoEncoder,MR-VAE),逐步增强、从粗到细地生成高质量低照度增强图像.MR-VAE由特征概... 针对低照度图像多重失真特点(低亮度、多噪声和模糊等),本文基于变分自编码器提出了一种多重构变分自编码器(Multiple Reconstruction-Variational AutoEncoder,MR-VAE),逐步增强、从粗到细地生成高质量低照度增强图像.MR-VAE由特征概率分布捕获、全局重构和细节重构三个模块构成,核心思想是将全局特征与局部特征分阶段重建、将多重失真问题逐步解决,全局重构模块构建图像全局特征,提高全局亮度,得到较粗糙的图像;细节重构模块权衡去噪与去模糊,生成细节更逼真、噪声更少与局部亮度更合适的图像;此外,本文定义了一个多项损失函数替代l 2损失,以引导网络生成高质量图像.实验结果表明,多重构与多项损失函数的设计提高了网络生成复杂图像、处理多重失真的低照度图像性能,且提高了生成图像的质量、信噪比和视觉特性. 展开更多
关键词 低照度图像增强 多重构 多项损失 多重失真 变分自编码 残差网络
在线阅读 下载PDF
一种基于ARD⁃GAN的低照度图像增强方法 被引量:11
9
作者 江泽涛 钱艺 +1 位作者 伍旭 张少钦 《电子学报》 EI CAS CSCD 北大核心 2021年第11期2160-2165,共6页
为解决低照度图像增强过程中噪声放大、细节不足以及色彩还原问题,本文提出一种基于注意力机制残差密集生成对抗网络(Attention Residual Dense⁃Generative Adversarial Networks,ARD⁃GAN)的低照度图像增强方法.首先,该方法在全局光照... 为解决低照度图像增强过程中噪声放大、细节不足以及色彩还原问题,本文提出一种基于注意力机制残差密集生成对抗网络(Attention Residual Dense⁃Generative Adversarial Networks,ARD⁃GAN)的低照度图像增强方法.首先,该方法在全局光照估计模块(Global Illumination Estimation Module,GIEM)中生成全局曝光注意力图,以引导后续模块更好地进行照度增强;其次,使用卷积残差模块(Convolution and Residual Module,CRM)和基于通道注意力的残差密集模块(Channel Attention Residual Dense Module,CARDM)分别提取浅层特征和深层特征,并将不同层次的特征融合以获取更好的细节信息;然后,在CARDM基础上将密集连接与批归一化相结合抑制噪声;最后改进了损失函数,使增强后图像色彩还原更好.实验表明,ARD⁃GAN有与主流算法相比,在主观视觉和客观评价指标上均得到更好的效果. 展开更多
关键词 低照度增强 图像细节增强 降噪 色彩还原 注意力机制 残差密集网络
在线阅读 下载PDF
参数池化卷积神经网络图像分类方法 被引量:17
10
作者 江泽涛 秦嘉奇 张少钦 《电子学报》 EI CAS CSCD 北大核心 2020年第9期1729-1734,共6页
传统的卷积神经网络使用池化层对信息进行降维操作,通常会造成信息损失,从而影响网络的表达能力.针对这一问题,使用参数池化层(Parameterized Pooling Layer)替代传统卷积神经网络中的池化层,提出参数池化卷积神经网络(Parameterized Po... 传统的卷积神经网络使用池化层对信息进行降维操作,通常会造成信息损失,从而影响网络的表达能力.针对这一问题,使用参数池化层(Parameterized Pooling Layer)替代传统卷积神经网络中的池化层,提出参数池化卷积神经网络(Parameterized Pooling CNN,PPCNN).参数池化层在仅仅增加了少量网络参数的情况下,最大可能的保留了卷积神经网络中希望被保留下来的特征;同时,由于增加了池化层前向传播的信息,从而影响了反向传播算法中权值的更新,网络收敛速度更快;实验结果表明,PPCNN模型与传统卷积神经网络模型以及部分改进模型相比,参数池化卷积神经网络模型是有效的. 展开更多
关键词 卷积神经网络 图像分类 池化方法 参数优化
在线阅读 下载PDF
面向HDMI2.1协议的高速双通道并行16b/18b编码器设计
11
作者 李小鹏 熊太平 +2 位作者 崔更申 吴明军 曾必诚 《光通信技术》 北大核心 2025年第4期46-52,共7页
为了满足高清晰度多媒体接口(HDMI)2.1协议对高速数据传输的需求并解决传统16b/18b编码器因运行差异(RD)依赖导致的延迟问题,提出了一种高速双通道并行16b/18b编码器设计方案。通过引入快速RD生成模块和双通道并行冗余架构,优化了编码流... 为了满足高清晰度多媒体接口(HDMI)2.1协议对高速数据传输的需求并解决传统16b/18b编码器因运行差异(RD)依赖导致的延迟问题,提出了一种高速双通道并行16b/18b编码器设计方案。通过引入快速RD生成模块和双通道并行冗余架构,优化了编码流程,实现了真正的并行编码,并基于Xilinx Zynq UltraScale+MPSoC现场可编程门阵列(FPGA)平台进行实验验证。实验结果表明:在400 MHz时钟频率下,编码器数据传输速率达到14.4 Gb/s,且资源占用率低(Block RAM占比62.5%),功耗仅为2.636 W;该设计显著降低了编码延迟,并保持了稳定的线性时延特性。 展开更多
关键词 16b/18b编码 多通道编码器 双通道并行编码器 高清晰度多媒体接口
在线阅读 下载PDF
基于可嵌入式网络结构的图像超分辨率重建方法 被引量:2
12
作者 强保华 庞远超 +4 位作者 杨明浩 曾坤 郑虹 谢武 莫烨 《计算机工程》 CAS CSCD 北大核心 2021年第5期221-228,共8页
针对卷积神经网络中的图像超分辨率重建模型训练不稳定与收敛速度较慢等问题,提出一种可嵌入式并行网络框架(EPNF),用于单幅图像超分辨率重建任务。将现有的图像超分辨率网络模型作为EPNF框架的深层结构部分嵌入到该框架中,能够以较小... 针对卷积神经网络中的图像超分辨率重建模型训练不稳定与收敛速度较慢等问题,提出一种可嵌入式并行网络框架(EPNF),用于单幅图像超分辨率重建任务。将现有的图像超分辨率网络模型作为EPNF框架的深层结构部分嵌入到该框架中,能够以较小参数代价加快所嵌入的超分辨率模型的收敛速度,在一定程度上提高模型的准确率。在EPNF网络结构的基础上,提出一种新的超分辨率重建方法EPNF_DCSR,采用稠密跳跃连接构造高分辨率(HR)图像的高频成分,并使用单层卷积构造HR图像的低频成分,合成一幅HR输出图像。实验结果表明,与当前主流的图像超分辨率算法相比,EPNF_DCSR具有更好的图像生成效果。 展开更多
关键词 卷积神经网络 上采样 并行网络 跳跃连接 图像超分辨率
在线阅读 下载PDF
结合全局和局部特征的BiGRU-RA图像中文描述模型 被引量:3
13
作者 邓珍荣 张永林 +3 位作者 杨睿 蓝如师 黄文明 罗笑南 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2021年第1期49-58,共10页
针对目前基于全局特征的图像描述模型存在细节语义信息不足的问题,提出结合全局和局部特征的图像中文描述模型.该模型采用编码器-解码器框架,在编码阶段,分别使用残差网络(residualnetworks,ResNet)和Faster R-CNN提取图像的全局特征和... 针对目前基于全局特征的图像描述模型存在细节语义信息不足的问题,提出结合全局和局部特征的图像中文描述模型.该模型采用编码器-解码器框架,在编码阶段,分别使用残差网络(residualnetworks,ResNet)和Faster R-CNN提取图像的全局特征和局部特征,提高模型对不同尺度图像特征的利用.采用嵌入了残差连接结构和视觉注意力结构的双向门控循环单元(bi-directional gated recurrent unit, BiGRU)作为解码器(BiGRU with residual connection andattention,BiGRU-RA).模型可以自适应分配图像特征和文本权重,改善图像特征区域和上下文信息的映射关系.此外,加入基于强化学习的策略梯度对模型的损失函数进行改进,直接对评价指标CIDEr进行优化.在AI Challenger全球挑战赛图像中文描述数据集上进行训练和实验,实验结果表明,该模型获得更高的评分,生成的描述语句更准确、更详细. 展开更多
关键词 图像描述 双向门控循环单元 视觉注意力 强化学习 残差连接
在线阅读 下载PDF
一种基于SAM-MSFF网络的低照度目标检测方法 被引量:3
14
作者 江泽涛 李慧 +3 位作者 雷晓春 朱玲红 施道权 翟丰硕 《电子学报》 EI CAS CSCD 北大核心 2024年第1期81-93,共13页
由于低照度图像具有对比度低、细节丢失严重、噪声大等缺点,现有的目标检测算法对低照度图像的检测效果不理想.为此,本文提出一种结合空间感知注意力机制和多尺度特征融合(Spatial-aware Attention Mechanism and Multi-Scale Feature F... 由于低照度图像具有对比度低、细节丢失严重、噪声大等缺点,现有的目标检测算法对低照度图像的检测效果不理想.为此,本文提出一种结合空间感知注意力机制和多尺度特征融合(Spatial-aware Attention Mechanism and Multi-Scale Feature Fusion,SAM-MSFF)的低照度目标检测方法 .该方法首先通过多尺度交互内存金字塔融合多尺度特征,增强低照度图像特征中的有效信息,并设置内存向量存储样本的特征,捕获样本之间的潜在关联性;然后,引入空间感知注意力机制获取特征在空间域的长距离上下文信息和局部信息,从而增强低照度图像中的目标特征,抑制背景信息和噪声的干扰;最后,利用多感受野增强模块扩张特征的感受野,对具有不同感受野的特征进行分组重加权计算,使检测网络根据输入的多尺度信息自适应地调整感受野的大小.在ExDark数据集上进行实验,本文方法的平均精度(mean Average Precision,mAP)达到77.04%,比现有的主流目标检测方法提高2.6%~14.34%. 展开更多
关键词 低照度图像 目标检测 空间感知注意力机制 多尺度特征融合 多感受野增强模块
在线阅读 下载PDF
基于机器学习算法的河南省冬小麦面积提取研究 被引量:1
15
作者 王小飞 张方敏 +2 位作者 任祖光 张世豪 高歌 《江苏农业科学》 北大核心 2024年第6期215-224,共10页
为了精准获取河南省冬小麦空间分布及面积数据,基于2003—2021年250 m MODIS-NDVI时间序列遥感数据集,通过设置不同的阈值条件获得高质量的样本数据,采用深度神经网络(DNN)、随机森林(RF)和支持向量机(SVM)算法,自动从NDVI时序数据中提... 为了精准获取河南省冬小麦空间分布及面积数据,基于2003—2021年250 m MODIS-NDVI时间序列遥感数据集,通过设置不同的阈值条件获得高质量的样本数据,采用深度神经网络(DNN)、随机森林(RF)和支持向量机(SVM)算法,自动从NDVI时序数据中提取冬小麦特征,分别训练出非线性模型,在250 m尺度对河南省冬小麦分布和面积进行识别。结果表明,基于DNN算法的河南省冬小麦面积识别模型精确率为97.26%,总体一致性为97.97%;基于RF、SVM算法的精确率分别为91.51%和89.31%,总体一致性均在90%以下。和RF、SVM算法相比,DNN算法在精度上有明显的提升,能够更好地反映河南省冬小麦的时间变化趋势和空间面积分布。该研究说明,运用中等分辨率长时间序列影像结合DNN算法,在一定程度上可以更准确识别大区域的农作物信息。 展开更多
关键词 冬小麦 深度神经网络 NDVI 遥感 时间序列
在线阅读 下载PDF
基于聚簇模型重用的概念漂移数据流半监督分类算法 被引量:1
16
作者 康伟 黎利辉 文益民 《计算机科学》 CSCD 北大核心 2024年第4期124-131,共8页
带概念漂移的半监督数据流分类任务中,仅有少部分的数据被标记,这给分类器的训练、概念漂移的检测以及分类器对新概念的适应带来了巨大的挑战。现有的半监督聚簇分类算法仅对分类器池中的聚簇模型进行简单的增量更新,未能有效重用历史... 带概念漂移的半监督数据流分类任务中,仅有少部分的数据被标记,这给分类器的训练、概念漂移的检测以及分类器对新概念的适应带来了巨大的挑战。现有的半监督聚簇分类算法仅对分类器池中的聚簇模型进行简单的增量更新,未能有效重用历史聚簇模型。因此,文中提出了一种新的聚簇模型重用的半监督分类算法,称为CDCMR。首先,数据流以数据块的形式到来,对数据块分完类后,训练一个簇数自适应确定的聚簇模型。其次,通过计算分类器池中的各组件分类器与聚簇模型之间的相似度,挑选多个组件分类器。再次,用当前数据块对挑选出来的组件分类器进行模型重用后,与聚簇模型集成。然后,将分类器池划分为新旧更替和多样性最大化分类器池进行更新。最后,对下一个数据块的样本进行集成分类。在多个人工和真实数据集上进行实验,结果表明,所提算法1)能有效适应概念漂移,与现有方法相比其性能有显著性提升。 展开更多
关键词 数据流 半监督学习 概念漂移 聚簇模型重用 集成学习
在线阅读 下载PDF
面向小目标的改进YOLOv5安全帽佩戴检测算法 被引量:8
17
作者 邓珍荣 熊宇旭 +1 位作者 杨睿 陈昱任 《计算机工程与应用》 CSCD 北大核心 2024年第3期78-87,共10页
安全帽是施工人员的安全保障,但是现有安全帽检测模型在复杂环境下对重叠和密集小目标存在误检和漏检等问题,为此提出改进YOLOv5的小目标检测算法。在YOLOv5的主干网络中加入Transformer捕获多个尺度上的全局信息,获得更丰富的高层语义... 安全帽是施工人员的安全保障,但是现有安全帽检测模型在复杂环境下对重叠和密集小目标存在误检和漏检等问题,为此提出改进YOLOv5的小目标检测算法。在YOLOv5的主干网络中加入Transformer捕获多个尺度上的全局信息,获得更丰富的高层语义特征;使用GsConv卷积进行特征融合增强,并引入坐标注意力机制(coordinate attention),让网络在更大区域上进行注意;检测头将分类和回归进行解耦,加快收敛速度;使用无锚点(anchor-free)的检测方法,简化算法结构,加快检测速度;使用EIOU损失函数来优化边框预测的准确度。在自制安全帽数据集上实验结果表明,改进的YOLOv5模型平均精度达到了96.33%,相比于YOLOv5模型,平均精度提高了4.73个百分点,达到了在复杂条件下对重叠和密集小目标检测的要求。 展开更多
关键词 安全帽检测 改进YOLOv5 TRANSFORMER 解耦头 无锚点(anchor-free)
在线阅读 下载PDF
深度网络生成式伪造人脸检测方法研究综述 被引量:2
18
作者 杨睿 胡心如 +4 位作者 黄卓超 张玉书 蓝如师 邓珍荣 罗笑南 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第10期1491-1510,共20页
随着深度网络生成式伪造人脸技术的迅速传播,不法分子通过伪造人脸图像和视频实施电信诈骗等犯罪活动,如何从海量数据中高效、准确地检测出伪造人脸成为研究焦点.文中从深度网络生成式伪造人脸图像和生成式伪造人脸视频2个角度出发,系... 随着深度网络生成式伪造人脸技术的迅速传播,不法分子通过伪造人脸图像和视频实施电信诈骗等犯罪活动,如何从海量数据中高效、准确地检测出伪造人脸成为研究焦点.文中从深度网络生成式伪造人脸图像和生成式伪造人脸视频2个角度出发,系统归纳、分析、比较了当前伪造人脸检测方法.针对伪造人脸图像,从基于数字图像处理基础、深层次特征提取、空间域特征分析、多特征融合分析和指纹检测5个类别详细介绍了检测方法;并从生理信号、身份信息、多模态和时空不一致4个类别对伪造人脸视频的检测方法进行了探讨.分析表明,目前深度网络生成式伪造人脸检测方法的泛化能力有待提高,在未来的研究中,应当着重提升模型的跨数据集泛化能力、准确性和实用性,从而更好地防范虚假信息传播,以保护个人隐私和维护网络安全环境. 展开更多
关键词 伪造人脸检测 生成式伪造人脸 人脸图像 人脸视频 深度网络
在线阅读 下载PDF
基于改进CPMs和SqueezeNet的轻量级人体骨骼关键点检测模型 被引量:4
19
作者 强保华 翟艺杰 +4 位作者 陈金龙 谢武 郑虹 王学文 张世豪 《计算机应用》 CSCD 北大核心 2020年第6期1806-1811,共6页
针对目前的人体骨骼关键点检测模型参数多、训练时间长和检测速度慢的问题,提出了一种将人体骨骼关键点检测模型CPMs与小型卷积神经网络模型SqueezeNet相结合的检测方法。首先,采用4个Stage的CPMs(CPMsStage4)对人物图像进行关键点检测... 针对目前的人体骨骼关键点检测模型参数多、训练时间长和检测速度慢的问题,提出了一种将人体骨骼关键点检测模型CPMs与小型卷积神经网络模型SqueezeNet相结合的检测方法。首先,采用4个Stage的CPMs(CPMsStage4)对人物图像进行关键点检测;然后,在CPMs-Stage4中引入SqueezeNet的Fire Module网络结构,利用Fire Module结构大大压缩模型参数,得到一种新的轻量级人体骨骼关键点检测模型SqueezeNet15-CPMs-Stage4。在扩展的LSP数据集上的验证结果显示,与CPMs相比,SqueezeNet15-CPMs-Stage4模型在训练时间上减少86.68%,在单张图像检测时间上减少44.27%,准确率达到90.4%;与改进的VGG-16、DeepCut和DeeperCut三种参照模型相比,SqueezeNet15-CPMs-Stage4模型在训练时间、检测速度和准确率方面均是最优的。实验结果表明,所提模型不仅检测准确率高,而且训练时间短、检测速度快,能够有效降低人体骨骼关键点检测模型的训练成本。 展开更多
关键词 人体骨骼关键点检测 人体姿态估计 深度学习 卷积神经网络 轻量级 CPMS SqueezeNet
在线阅读 下载PDF
一种基于Night-YOLOX的低照度目标检测方法 被引量:5
20
作者 江泽涛 施道权 +3 位作者 雷晓春 何玉婷 李慧 周永刚 《电子学报》 EI CAS CSCD 北大核心 2023年第10期2821-2830,共10页
由于在低照度场景下获取的图像具有亮度弱、对比度低、噪声多和细节丢失等特点,使用现有的检测模型对低照度图像进行目标检测会出现定位不准确和分类错误,从而导致最终的检测精度偏低.针对以上现象,本文提出了一种基于Night-YOLOX的低... 由于在低照度场景下获取的图像具有亮度弱、对比度低、噪声多和细节丢失等特点,使用现有的检测模型对低照度图像进行目标检测会出现定位不准确和分类错误,从而导致最终的检测精度偏低.针对以上现象,本文提出了一种基于Night-YOLOX的低照度目标检测方法.该方法首先设计了一个低级特征聚集模块(Low-level Feature Gathering Module,LFGM)与主干网络合并.在低照度场景下捕获更多有效的低级特征有利于定位目标,该模块通过聚集浅层特征图中具有判别性的低级特征并送入高级特征图和深层卷积阶段中,以补偿在对低照度图像进行特征提取过程中边缘、轮廓和纹理等低级特征的缺失.然后,设计了一种注意力引导块(Attention Guidance Block,AGB)嵌入检测模型的颈部结构,从而减少低照度图像中噪声干扰的影响,引导检测模型推断出特征图中完整的对象区域范围并提取更多有用的对象特征信息,以提高目标分类的准确性.最后,在真实低照度图像数据集ExDark上进行实验,结果表明所提出的Night-YOLOX相比于其它主流的目标检测方法,在低照度场景下具有更好的检测性能. 展开更多
关键词 目标检测 低照度图像 低级特征 注意力机制 YOLOX
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部