期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合EEMD与HGS-LSTM的船厂生产车间能耗预测
1
作者 王冲 华德睿 +2 位作者 彭江 黄林 陈奕沅 《船海工程》 北大核心 2025年第4期115-120,126,共7页
为精准预测船厂生产车间的能耗,提出一种融合了集合经验模态分解(EEMD)与长短期记忆网络(LSTM)的能耗预测模型。采用EEMD模型对能耗时序数据进行分解,降低原始时序的不稳定性;采用饥饿游戏搜索算法(HGS)对LSTM的超参数进行优化,并对分... 为精准预测船厂生产车间的能耗,提出一种融合了集合经验模态分解(EEMD)与长短期记忆网络(LSTM)的能耗预测模型。采用EEMD模型对能耗时序数据进行分解,降低原始时序的不稳定性;采用饥饿游戏搜索算法(HGS)对LSTM的超参数进行优化,并对分解的各本征模函数进行预测,将各个预测结果叠加得到最终预测结果;采用LSTM网络、PSO-LSTM网络、HGS-LSTM网络、EEMD-LSTM网络与该组合模型对某中型造船厂生产车间能耗数据进行预测。实验结果表明,EEMD-HGS-LSTM模型具有更高的预测精度,在单步和多步预测中的MAE、RMSE均明显低于其他对比预测模型。 展开更多
关键词 车间能耗预测 集合经验模态分解 长短期记忆网络 饥饿游戏搜索算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部