期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合EEMD与HGS-LSTM的船厂生产车间能耗预测
1
作者
王冲
华德睿
+2 位作者
彭江
黄林
陈奕沅
《船海工程》
北大核心
2025年第4期115-120,126,共7页
为精准预测船厂生产车间的能耗,提出一种融合了集合经验模态分解(EEMD)与长短期记忆网络(LSTM)的能耗预测模型。采用EEMD模型对能耗时序数据进行分解,降低原始时序的不稳定性;采用饥饿游戏搜索算法(HGS)对LSTM的超参数进行优化,并对分...
为精准预测船厂生产车间的能耗,提出一种融合了集合经验模态分解(EEMD)与长短期记忆网络(LSTM)的能耗预测模型。采用EEMD模型对能耗时序数据进行分解,降低原始时序的不稳定性;采用饥饿游戏搜索算法(HGS)对LSTM的超参数进行优化,并对分解的各本征模函数进行预测,将各个预测结果叠加得到最终预测结果;采用LSTM网络、PSO-LSTM网络、HGS-LSTM网络、EEMD-LSTM网络与该组合模型对某中型造船厂生产车间能耗数据进行预测。实验结果表明,EEMD-HGS-LSTM模型具有更高的预测精度,在单步和多步预测中的MAE、RMSE均明显低于其他对比预测模型。
展开更多
关键词
车间能耗预测
集合经验模态分解
长短期记忆网络
饥饿游戏搜索算法
在线阅读
下载PDF
职称材料
题名
融合EEMD与HGS-LSTM的船厂生产车间能耗预测
1
作者
王冲
华德睿
彭江
黄林
陈奕沅
机构
高性能舰船技术教育部重点实验室(武汉理工大学)
武汉理工大学船海与能源动力工程学院
广西南宁船舶检验中心
出处
《船海工程》
北大核心
2025年第4期115-120,126,共7页
基金
国家自然科学基金(52101369)。
文摘
为精准预测船厂生产车间的能耗,提出一种融合了集合经验模态分解(EEMD)与长短期记忆网络(LSTM)的能耗预测模型。采用EEMD模型对能耗时序数据进行分解,降低原始时序的不稳定性;采用饥饿游戏搜索算法(HGS)对LSTM的超参数进行优化,并对分解的各本征模函数进行预测,将各个预测结果叠加得到最终预测结果;采用LSTM网络、PSO-LSTM网络、HGS-LSTM网络、EEMD-LSTM网络与该组合模型对某中型造船厂生产车间能耗数据进行预测。实验结果表明,EEMD-HGS-LSTM模型具有更高的预测精度,在单步和多步预测中的MAE、RMSE均明显低于其他对比预测模型。
关键词
车间能耗预测
集合经验模态分解
长短期记忆网络
饥饿游戏搜索算法
Keywords
workshops energy consumption prediction
ensemble empirical mode decomposition
long short-term memory
hunger games search
分类号
U673.2 [交通运输工程—船舶及航道工程]
TP181 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合EEMD与HGS-LSTM的船厂生产车间能耗预测
王冲
华德睿
彭江
黄林
陈奕沅
《船海工程》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部